



## **Cambridge International Examinations**

Cambridge International Advanced Subsidiary and Advanced Level

| CANDIDATE<br>NAME  |         |            |                   |         |   |           |             |    |
|--------------------|---------|------------|-------------------|---------|---|-----------|-------------|----|
| CENTRE<br>NUMBER   |         |            | ANDIDATE<br>JMBER |         |   |           |             |    |
| MATHEMATICS        |         |            |                   |         |   |           | 9709/       | 12 |
| Paper 1 Pure Ma    | ıthema  | itics 1 (P | 1)                |         | 0 | ctober/No | ovember 20  | 18 |
|                    |         |            |                   |         |   | 1 ho      | ur 45 minut | es |
| Candidates answ    | er on t | he Quest   | ion Pape          | ∍r.     |   |           |             |    |
| Additional Materia | als:    | List of F  | ormulae           | ∍ (MF9) |   |           |             |    |

## **READ THESE INSTRUCTIONS FIRST**

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.



| •••••  |          | •••••  | •••••  | •••••• | •••••  |                                         | •••••  | ••••• |
|--------|----------|--------|--------|--------|--------|-----------------------------------------|--------|-------|
| •••••  |          |        |        |        |        |                                         |        |       |
|        |          |        |        |        |        |                                         |        |       |
|        |          |        |        |        |        |                                         |        |       |
| •••••  | •••••    | •••••  |        | •••••  |        |                                         |        | ••••• |
|        |          |        |        |        |        |                                         |        |       |
|        |          |        |        |        |        |                                         |        |       |
| •••••• | •••••••• | •••••• | •••••• | •••••• |        | •                                       | •••••  |       |
| •••••  |          |        | •••••  | •••••  |        | • • • • • • • • • • • • • • • • • • • • | •••••  |       |
|        |          |        |        |        |        |                                         |        |       |
|        |          |        |        |        |        |                                         |        |       |
| •••••  | ••••••   | •••••• | •••••• | •••••  |        |                                         | •••••  | ••••• |
|        |          |        |        |        |        |                                         |        | ••••• |
|        |          |        |        |        |        |                                         |        |       |
|        |          |        |        |        |        |                                         |        |       |
| •••••  | ••••••   | •••••• | •••••  | •••••  | •••••  |                                         | •••••  | ••••• |
| •••••  |          |        |        |        |        |                                         |        | ••••• |
|        |          |        |        |        |        |                                         |        |       |
|        |          |        |        |        |        |                                         |        |       |
| •••••  | •••••    | •••••  |        | •••••  |        |                                         |        |       |
|        |          |        |        |        |        |                                         |        |       |
|        |          |        |        |        |        |                                         |        |       |
| •••••  | •••••••• | •••••• | •••••• | •••••  | •••••• | • • • • • • • • • • • • • • • • • • • • | •••••• | ••••• |
| •••••  |          |        |        |        |        |                                         |        |       |
|        |          |        |        |        |        |                                         |        |       |
|        |          |        |        |        |        |                                         |        |       |
| •••••  | ••••••   | •••••  | •••••• | •••••  |        | •                                       | •••••  | ••••• |
|        |          |        |        | •••••  |        | •••••                                   |        | ••••• |
|        |          |        |        |        |        |                                         |        |       |
|        |          |        |        |        |        |                                         |        |       |
| •••••  | ••••••   | •••••  | •••••• | •••••• | •••••  |                                         | •••••  | ••••• |
|        |          |        |        |        |        |                                         |        |       |

| 2 | Showing all necessary working, find $\int_{1}^{4} \left( \sqrt{x} + \frac{2}{\sqrt{x}} \right) dx$ . | [4]    |
|---|------------------------------------------------------------------------------------------------------|--------|
|   |                                                                                                      |        |
|   |                                                                                                      |        |
|   |                                                                                                      |        |
|   |                                                                                                      | •••••• |
|   |                                                                                                      |        |
|   |                                                                                                      |        |
|   |                                                                                                      |        |
|   |                                                                                                      | •••••• |
|   |                                                                                                      |        |
|   |                                                                                                      |        |
|   |                                                                                                      | •••••• |
|   |                                                                                                      |        |
|   |                                                                                                      |        |
|   |                                                                                                      |        |
|   |                                                                                                      | •••••• |
|   |                                                                                                      | •••••• |
|   |                                                                                                      |        |
|   |                                                                                                      |        |
|   |                                                                                                      |        |
|   |                                                                                                      |        |
|   |                                                                                                      |        |

3



The diagram shows part of the curve  $y = x(9 - x^2)$  and the line y = 5x, intersecting at the origin O and the point P. Point P lies on the line y = 5x between O and P and the P-coordinate of P is P-coordinate of P is P-coordinate of P-c

| (i)          | Express the length of $PQ$ in terms of $t$ , simplifying your answer.   | [2]  |
|--------------|-------------------------------------------------------------------------|------|
|              |                                                                         | •••• |
|              |                                                                         | •••• |
|              |                                                                         | •••• |
| <b>(**</b> \ |                                                                         |      |
| (11)         | Given that $t$ can vary, find the maximum value of the length of $PQ$ . | [3]  |
|              |                                                                         | •••• |
|              |                                                                         |      |
|              |                                                                         | •••• |
|              |                                                                         | •••• |
|              |                                                                         | •••• |
|              |                                                                         | •••• |
|              |                                                                         | •••• |
|              |                                                                         |      |
|              |                                                                         |      |

| 4 Functions f and g are defined by |
|------------------------------------|
|------------------------------------|

$$f: x \mapsto 2 - 3\cos x$$
 for  $0 \le x \le 2\pi$ ,  
 $g: x \mapsto \frac{1}{2}x$  for  $0 \le x \le 2\pi$ .

| (i)  | Solve the equation $fg(x) = 1$ . | [3] |
|------|----------------------------------|-----|
|      |                                  |     |
|      |                                  |     |
|      |                                  |     |
|      |                                  |     |
|      |                                  |     |
|      |                                  |     |
|      |                                  |     |
|      |                                  |     |
|      |                                  |     |
|      |                                  |     |
|      |                                  |     |
|      |                                  |     |
| (ii) | Sketch the graph of $y = f(x)$ . | [3] |

|     |                                              | are positive. |
|-----|----------------------------------------------|---------------|
| (i) | Find the value of $x$ and the value of $y$ . |               |
|     |                                              |               |
|     |                                              |               |
|     |                                              |               |
|     |                                              |               |
|     |                                              |               |
|     |                                              |               |
|     |                                              |               |
|     |                                              |               |
|     |                                              |               |
|     |                                              |               |
|     |                                              |               |
|     |                                              |               |
|     |                                              |               |
|     |                                              |               |
|     |                                              |               |
|     |                                              |               |
|     |                                              |               |
|     |                                              |               |
|     |                                              |               |
|     |                                              |               |
|     |                                              |               |
|     |                                              |               |
|     |                                              |               |

| Find the fourth term of each progression. | [3] |
|-------------------------------------------|-----|
|                                           |     |
|                                           |     |
|                                           |     |
|                                           |     |
|                                           |     |
|                                           |     |
|                                           |     |
|                                           |     |
|                                           |     |
|                                           |     |
|                                           |     |
|                                           |     |
|                                           |     |
|                                           |     |
|                                           |     |
|                                           |     |
|                                           |     |
|                                           |     |
|                                           |     |
|                                           |     |
|                                           |     |
|                                           |     |
|                                           |     |
|                                           |     |
|                                           |     |
|                                           |     |



The diagram shows a triangle ABC in which BC = 20 cm and angle  $ABC = 90^{\circ}$ . The perpendicular from B to AC meets AC at D and AD = 9 cm. Angle  $BCA = \theta^{\circ}$ .

| (i) | By expressing the length of <i>BD</i> in terms of $\theta$ in each of the triangles <i>ABD</i> and <i>DBC</i> , show that $20 \sin^2 \theta = 9 \cos \theta$ . [4] |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                                                    |
|     |                                                                                                                                                                    |
|     |                                                                                                                                                                    |
|     |                                                                                                                                                                    |
|     |                                                                                                                                                                    |
|     |                                                                                                                                                                    |
|     |                                                                                                                                                                    |
|     |                                                                                                                                                                    |
|     |                                                                                                                                                                    |
|     |                                                                                                                                                                    |
|     |                                                                                                                                                                    |
|     |                                                                                                                                                                    |
|     |                                                                                                                                                                    |
|     |                                                                                                                                                                    |
|     |                                                                                                                                                                    |
|     |                                                                                                                                                                    |
|     |                                                                                                                                                                    |
|     |                                                                                                                                                                    |

| Hence, showing all necessary working, calculate $\theta$ . |        |
|------------------------------------------------------------|--------|
|                                                            |        |
|                                                            |        |
|                                                            | •••••  |
|                                                            |        |
|                                                            |        |
|                                                            |        |
|                                                            |        |
|                                                            | •••••• |
|                                                            |        |
|                                                            |        |
|                                                            |        |
|                                                            |        |
|                                                            |        |
|                                                            |        |
|                                                            |        |
|                                                            | •••••  |
|                                                            |        |
|                                                            |        |
|                                                            |        |
|                                                            |        |
|                                                            |        |
|                                                            |        |
|                                                            |        |
|                                                            | •••••  |
|                                                            |        |
|                                                            |        |
|                                                            |        |
|                                                            |        |
|                                                            |        |
|                                                            |        |
|                                                            |        |
|                                                            | •••••• |
|                                                            |        |
|                                                            |        |
|                                                            |        |
|                                                            |        |
|                                                            |        |
|                                                            |        |



The diagram shows a solid cylinder standing on a horizontal circular base with centre O and radius 4 units. Points A, B and C lie on the circumference of the base such that AB is a diameter and angle  $BOC = 90^{\circ}$ . Points P, Q and R lie on the upper surface of the cylinder vertically above A, B and C respectively. The height of the cylinder is 12 units. The mid-point of CR is M and N lies on BQ with BN = 4 units.

Unit vectors  $\mathbf{i}$  and  $\mathbf{j}$  are parallel to OB and OC respectively and the unit vector  $\mathbf{k}$  is vertically upwards.

| Evaluate $\overrightarrow{PN} \cdot \overrightarrow{PM}$ and hence find angle $MPN$ . | [7]   |
|---------------------------------------------------------------------------------------|-------|
|                                                                                       |       |
|                                                                                       |       |
|                                                                                       |       |
|                                                                                       |       |
|                                                                                       |       |
|                                                                                       |       |
|                                                                                       |       |
|                                                                                       |       |
|                                                                                       |       |
|                                                                                       |       |
|                                                                                       |       |
|                                                                                       | ••••• |



The diagram shows an isosceles triangle ACB in which AB = BC = 8 cm and AC = 12 cm. The arc XC is part of a circle with centre A and radius 12 cm, and the arc YC is part of a circle with centre B and radius 8 cm. The points A, B, X and Y lie on a straight line.

| (i) | Show that angle $CBY = 1.445$ radians, correct to 4 significant figures. | [3]   |
|-----|--------------------------------------------------------------------------|-------|
|     |                                                                          | ••••• |
|     |                                                                          | ••••• |
|     |                                                                          | ••••• |
|     |                                                                          | ••••• |
|     |                                                                          | ••••• |
|     |                                                                          | ••••• |
|     |                                                                          | ••••• |
|     |                                                                          | ••••• |
|     |                                                                          | ••••  |
|     |                                                                          | ••••• |
|     |                                                                          | ••••  |
|     |                                                                          | ••••• |
|     |                                                                          | ••••• |
|     |                                                                          | ••••  |
|     |                                                                          |       |
|     |                                                                          | ••••  |

| <br> |
|------|
|      |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
| <br> |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
| <br> |
|      |
|      |
|      |

| )   | Express $2x^2 - 12x + 7$ in the form $2(x + a)^2 + b$ , where a and b are constants. | [2    |
|-----|--------------------------------------------------------------------------------------|-------|
|     |                                                                                      |       |
|     |                                                                                      | ••••• |
|     |                                                                                      |       |
|     |                                                                                      |       |
|     |                                                                                      |       |
|     |                                                                                      |       |
|     |                                                                                      |       |
|     |                                                                                      |       |
|     |                                                                                      |       |
|     |                                                                                      |       |
|     |                                                                                      |       |
|     |                                                                                      |       |
|     |                                                                                      | ••••• |
|     |                                                                                      |       |
|     |                                                                                      |       |
|     |                                                                                      |       |
|     |                                                                                      |       |
|     |                                                                                      |       |
| ) ; | State the range of f.                                                                |       |
|     |                                                                                      |       |
|     |                                                                                      |       |
|     |                                                                                      |       |
|     |                                                                                      |       |

| The   | ne function g is defined by $g: x \mapsto 2x^2 - 12x + 7$ for $x \le k$ . |     |  |
|-------|---------------------------------------------------------------------------|-----|--|
| (iii) | State the largest value of $k$ for which g has an inverse.                | [1] |  |
|       |                                                                           |     |  |
|       |                                                                           |     |  |
|       |                                                                           |     |  |
|       |                                                                           |     |  |
|       |                                                                           |     |  |
| (iv)  | Given that g has an inverse, find an expression for $g^{-1}(x)$ .         | [3] |  |
|       |                                                                           |     |  |
|       |                                                                           |     |  |
|       |                                                                           |     |  |
|       |                                                                           |     |  |
|       |                                                                           |     |  |
|       |                                                                           |     |  |
|       |                                                                           |     |  |
|       |                                                                           |     |  |
|       |                                                                           |     |  |
|       |                                                                           |     |  |
|       |                                                                           |     |  |
|       |                                                                           |     |  |
|       |                                                                           |     |  |
|       |                                                                           |     |  |
|       |                                                                           |     |  |
|       |                                                                           |     |  |
|       |                                                                           |     |  |
|       |                                                                           |     |  |
|       |                                                                           |     |  |
|       |                                                                           |     |  |

|           | e set of val                            | lues of $k$ f | for which  | the line doe  | s not meet  | the curve.     |       |        |
|-----------|-----------------------------------------|---------------|------------|---------------|-------------|----------------|-------|--------|
| •••••     |                                         | •••••         |            |               |             |                |       |        |
|           |                                         |               |            |               |             |                |       |        |
| •••••     | · • • • • • • • • • • • • • • • • • • • |               | •••••      | •••••         | •••••       | ••••••         |       | •••••• |
| •••••     |                                         |               |            | ••••••        | •••••       | ••••••         | ••••• | •••••  |
|           |                                         |               |            |               |             |                |       |        |
|           |                                         |               |            |               | •••••       |                |       |        |
|           |                                         |               |            |               |             |                |       |        |
|           |                                         |               |            |               |             |                |       |        |
| ••••••    |                                         |               | ••••••     |               | ••••••      | ••••••         | ••••• | •••••• |
| •••••     | ••••••                                  |               | ••••••     | •••••         | •••••       |                | ••••• | •••••  |
|           |                                         |               |            |               |             |                |       |        |
|           |                                         |               |            |               |             |                |       |        |
|           |                                         |               |            |               |             |                |       |        |
| ••••••    |                                         |               | ••••••     | ••••••        | ••••••      | ••••••         | •     | •••••• |
| •••••     | ••••••                                  |               | •••••      | •••••         | •••••       | •••••          | ••••• | •••••  |
|           |                                         |               |            |               |             |                |       | •••••• |
| •••••     |                                         |               |            |               |             |                |       |        |
| ha casa s | where $k=1$                             | 15 the cu     | rva inters | acts the line | at points A | and R          |       |        |
|           |                                         |               |            | ects the line | at points A | and $B$ .      |       |        |
|           | where $k = 1$ be coordina               |               |            | ects the line | at points A | and B.         |       |        |
|           |                                         |               |            | ects the line | at points A | and <i>B</i> . |       |        |
|           |                                         |               |            | ects the line | at points A | and B.         |       |        |
|           |                                         |               |            | ects the line | at points A | and <i>B</i> . |       |        |
|           |                                         |               |            | ects the line | at points A | and B.         |       |        |
|           |                                         |               |            | ects the line | at points A | and B.         |       |        |
|           |                                         |               |            | ects the line | at points A | and B.         |       |        |
|           |                                         |               |            | ects the line | at points A | and B.         |       |        |

|       |                                                                                   | ••••• |
|-------|-----------------------------------------------------------------------------------|-------|
| (iii) | Find the equation of the perpendicular bisector of the line joining $A$ and $B$ . | [3]   |
|       |                                                                                   |       |
|       |                                                                                   |       |
|       |                                                                                   |       |
|       |                                                                                   |       |
|       |                                                                                   |       |
|       |                                                                                   |       |
|       |                                                                                   |       |
|       |                                                                                   |       |
|       |                                                                                   |       |
|       |                                                                                   |       |
|       |                                                                                   |       |
|       |                                                                                   |       |
|       |                                                                                   |       |
|       |                                                                                   |       |
|       |                                                                                   |       |

11



The diagram shows part of the curve  $y = 3\sqrt{(4x+1)} - 2x$ . The curve crosses the y-axis at A and the stationary point on the curve is M.

| (i) | Obtain expressions for $\frac{dy}{dx}$ and | $\int y\mathrm{d}x.$ | [5] |
|-----|--------------------------------------------|----------------------|-----|
|     |                                            |                      |     |
|     |                                            |                      |     |
|     |                                            |                      |     |
|     |                                            |                      |     |
|     |                                            |                      |     |
|     |                                            |                      |     |
|     |                                            |                      |     |
|     |                                            |                      |     |
|     |                                            |                      |     |
|     |                                            |                      |     |
|     |                                            |                      |     |
|     |                                            |                      |     |
|     |                                            |                      |     |
|     |                                            |                      |     |
|     |                                            |                      |     |

| •••••       |
|-------------|
|             |
|             |
|             |
|             |
|             |
| •••••       |
| •••••       |
|             |
| •••••       |
| •••••       |
|             |
|             |
| • • • • • • |
|             |
|             |

## **Additional Page**

| If you use the following fined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown. |
|---------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.