

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/43

Paper 4 Mechanics

October/November 2020

1 hour 15 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- Where a numerical value for the acceleration due to gravity (g) is needed, use 10 m s⁻².

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

This document has 12 pages. Blank pages are indicated.

•)	Find ν .
a <i>)</i>	riid V.
b)	Find the greatest height of P above the ground.

ang	box of mass 5 kg is pulled at a constant speed a distance of 15 m up a rough plane inclined at an gle of 20° to the horizontal. The box moves along a line of greatest slope against a frictional force 40 N. The force pulling the box is parallel to the line of greatest slope.					
(a)	Find the work done against friction. [1]					
(b)	Find the change in analyticational notantial angular of the how					
(D)	Find the change in gravitational potential energy of the box. [2]					
(c)	Find the work done by the pulling force. [1]					

`		-
)	Draw a diagram showing all the forces acting on the block.	ĺ
)	Find the coefficient of friction between the block and the table.	

7.14	
Find the two possible values of the loss of kinetic energy due to the collision.	
	••••••

has	velocity $v \text{m s}^{-1}$, where $v = 4t^2 - 20t + 21$.
(a)	Find the values of t for which P is at instantaneous rest. [2]
(b)	Find the initial acceleration of P . [2]
(c)	Find the minimum velocity of P . [2]

•••••								•••••
•••••	•••••		•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
								•••••
•••••	••••••		•••••	•••••	•••••	••••••	••••••	•••••
•••••	••••••		•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••
••••••	•••••••••		•••••	•••••	••••••	•	••••••	•••••
		,						•••••
							•••••	•••••
••••••	••••••		•••••	•••••	•••••		••••••	•••••
•••••	•••••		•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••
•••••							• • • • • • • • • • • • • • • • • • • •	•••••
								•••••
								•••••

A car of mass 1600 kg is pulling a caravan of mass 800 kg. The car and the caravan are connected

a) Th	e car and caravan are travelling along a straight horizontal road.
(i) Given that the car and caravan have a constant speed of 25 m s ⁻¹ , find the power of the car's engine.
(i	The engine's power is now suddenly increased to 39 kW. Find the instantaneous acceleration of the car and caravan and find the tension in the tow-bar. [5]

(b)	The car and caravan now travel up a straight hill, inclined at an angle of $\sin^{-1} 0.05$ to the horizontal, at a constant speed of $v \text{m s}^{-1}$. The car's engine is working at 32.5 kW.
	Find v . [3]

As shown in the diagram, particles A and B of masses $2 \, \text{kg}$ and $3 \, \text{kg}$ respectively are attached to the ends of a light inextensible string. The string passes over a small fixed smooth pulley which is attached to the top of two inclined planes. Particle A is on plane P, which is inclined at an angle of 10° to the horizontal. Particle B is on plane Q, which is inclined at an angle of 20° to the horizontal. The string is taut, and the two parts of the string are parallel to lines of greatest slope of their respective planes.

(a)	It is given that plane P is smooth, plane Q is rough, and the particles are in limiting equilibrium.					
	Find the coefficient of friction between particle B and plane Q .	[5]				
		••••				
		•••••				
		••••				
		••••				
		••••				
		••••				
		••••				
		••••				
		••••				
		••••				
		••••				
		••••				
		••••				

(b)	It is given instead that both planes are smooth and that the particles are released from rest at the same horizontal level.							
	Find the time taken until the difference in the vertical height of the particles is 1 m. [You should assume that this occurs before A reaches the pulley or B reaches the bottom of plane Q .] [6]							

Additional Page

If you use the following lined page to must be clearly shown.	o complete the answer(s) to any question(s), the	question number(s)

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.