

Mark Scheme (Results)

Summer 2019

Pearson Edexcel GCE In Mathematics (8MA0) Paper 2 Statistics

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019 Publications Code 8MA0_02_MS_2019 All the material in this publication is copyright © Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question	Scheme	Marks	AOs
1(a)	Label each year group	B1	1.1b
	Use <u>random</u> numbers to select a	B1	1.1b
	Simple random sample of <u>24 Year 12s</u> and <u>16 Year 13s</u> .	B1	1.1b
		(3)	
(b)	Increase by 2.8 marks	B1	3.4
		(1)	
(c)	e.g. 'the best performance is predicted for the students who never wake up'	B1	3.5b
		(1)	
		(3	5 marks)
	Notes		
	Condone poor numbering but if just one list, then the Year 12 distinguishable from the Year 13sB1: for use of random numbers/sample/selection to choose studen		
	B1: for <u>24 Year 12s</u> , and <u>16 Year 13s</u>		
Note:	A description of a systematic sample: only allow access to the first mark and therefore may score maximum B1B0B0		
(b)	B1: Using the gradient of the regression equation must include <u>increase(o.e.)</u> and <u>2.8</u> 'Increase by approximately 3 marks' is B0 but isw if 2.8 is seen 5.6 ÷ 2 is not sufficient		
(c)	 B1: for any suitable limitation of the model e.g. the idea that the longer you sleep the better performance in the test or only valid between 0 and 24 hours (within range of the data) or only applicable to the amount of sleep the night before the test or only takes sleep into consideration/does not include other variables (factors) or cannot score below 26.1 marks on the test or the model might not be linear over the entire range or the model might predict more than the maximum mark 		
	B0: e.g. might not be correlation between <i>s</i> and <i>p</i> or individual student performance may vary		

Question	Scheme	Marks	AOs
2	x = 0	B1	2.2a
	P(A) = 0.1 + z + y $P(C) = 0.39 + z[+x]$ $P(A and C) = z$	M1	2.1
	P(A and C) = P(A)×P(C) → z = (0.1+z+y)×(0.39+z[+x])	M1	1.1b
	$\begin{bmatrix} \sum p = 1 \end{bmatrix}$ 0.06 + 0.3 + 0.39 + 0.1 + z + y[+x] = 1 \rightarrow [z + y[+x] = 0.15]	M1	1.1b
	Solving (simultaneously) leading to $z = 0.13$ $y = 0.02$	A1	1.1b
		(:	5 marks)
	Notes		
	B1: for $x = 0$, may be seen on Venn diagram		
	M1: Identifying the probabilities required for independence and at least 2 correct These must be labelledIf there are no labels, then this may be implied by $z = (0.1 + z + y)(0.39 + z [+x])$, allow one numerical slipAllow e.g. $P(A') = 0.39 + 0.30 + 0.06[+x]$ $P(C) = 0.39 + z[+x]$ $P(A' and C) = 0.39$		
	 [Not on spec. but you may see use of conditional probabilities] M1: Use of independence equation with their labelled probabilities in terms <i>y</i>, <i>z</i> [and <i>x</i>] All their probabilities must be substituted into a correct formula Sight of a correct equation e.g. <i>z</i> = (0.1 + <i>z</i> + <i>y</i>)(0.39 + <i>z</i> [+<i>x</i>]) scores M1M1 M1: Using Σ<i>p</i> = 1 Implied by [<i>x</i> +] <i>y</i> + <i>z</i> = 0.15 or their <i>x</i> + <i>y</i> + <i>z</i> = 0.15 where <i>x</i>, <i>y</i>, and <i>z</i> are all probabilities or e.g. P(A) = 0.25 		
	A1: both $y = 0.02$ and $z = 0.13$		

Question	Scheme	Marks	AOs
3 (a)	(Discrete) uniform (distribution)	B1	1.2
		(1)	
(b)	B(28, 0.2)	B1	3.3
(i)	$P(X \ge 7) = 1 - P(X \le 6) [= 1 - 0.6784]$	M1	3.4
	awrt <u>0.322</u>	A1	1.1b
(ii)	P(4 ≤ X < 8) = P(X ≤ 7) – P(X ≤ 3) [= 0.818 – 0.160]	M1	3.1b
	awrt <u>0.658</u>	A1	1.1b
		(5)	
		(6 marks)
	Notes		
(a)	Continuous uniform is B0		
(b)	 (b) B1: for identifying correct model, B(28, 0.2) allow B, bin or binomial may be implied by one correct answer or sight one correct probability i.e. awrt 0.678, awrt 0.818 or awrt 0.160 B(0.2, 28) is B0 unless it is used correctly 		
(i)	M1: Writing or using $1 - P(X \le 6)$ or $1 - P(X < 7)$ A1: awrt 0.322 (correct answer only scores M1A1)		
(ii)	M1: Writing or using $P(X \le 7) - P(X \le 3)$ or $P(X < 8) - P(X < 4)$ or $P(X = 4) + P(X = 5) + P(X = 6) + P(X = 6)$	X = 7)	
	Condone P(4) as P($X = 4$), etc. A1: awrt 0.658 (correct answer only scores M1A1)	,	

Question	Scheme	Marks	AOs
4 (a)	$\underline{\text{Tr}}(\text{ace})$ (data needs to be converted to numbers before the calculation can be carried out)	B1	2.4
		(1)	
(b)	$[1+]\frac{138-131}{24} \times 4$	M1	2.1
	= 2.1666 awrt <u>2.17</u>	A1	1.1b
		(2)	
(c)	$\sigma = \sqrt{\frac{7704.1875}{184} - \left(\frac{539.75}{184}\right)^2} = 5.7676 \sigma = \text{awrt } \underline{5.77}$	M1 A1	1.1b 1.1b
		(2)	
(d)(i)	Using class midpoints to estimate the mean assumes that the values are uniformly distributed within the class(es) .	B1	2.4
(ii)& (iii)	This is not the case here as the majority of the data (in the first class) are 0.	B1	2.3
	The actual mean is likely to be <u>smaller</u> than the estimate (since the first group has more values at 0 and close to 0)	dB1	2.2b
		(3)	
		(8 marks)
	Notes		
(a)	B1: Identifying tr(ace) data Ignore comments about n/a, missing data, anomalies, etc		
(b)	M1: Correct fraction $\frac{7}{24} \times 4$ allow working down $[5] - \frac{155-138}{24} \times 4$ allow a correct equation leading to a correct fraction e.g. $\frac{x-1}{5-1} = \frac{138-131}{155-131}$ for M1 Use of $(n + 1)$ with 138.75 allow $\frac{7.75}{24} \times 4$ A1: awrt 2.17 (condone $\frac{13}{6}$) awrt 2.29 from $(n + 1)$ (condone $\frac{55}{24}$)		
(c)	M1: Correct expression for standard deviation (allow mean = awrt 2.93) A1: awrt 5.77 correct answer only scores M1A1 (allow $s = 5.78$)		
(d)(i)	 SC: 5.76 with no working scores M1A0 B1: Explaining that data assumed to be spread evenly across each class (o.e.) e.g. The midpoint of each class is the mean of each class or all the values in the class are located at the midpoint condone normally distributed within each class 		
Mark together	 B1: Demonstrating an understanding of the LDS that the maje (in the first class) are at 0 or close to 0 (trace). dB1: (dependent upon 2nd B1) Correct inference based on known and the statement of the stateme		
(ii)&(iii)	SC: If B1 is scored in (i) for 'The data are spread evenly across in (ii) 'The data are not evenly distributed in the classes' score 'the actual mean is smaller' with no further justification scores	es B1 but ir	

Question	Scheme	Marks	AOs
5(a)	The alternative hypothesis should be $H_1: p > 0.15$	B1	2.5
	The calculation of the test statistic should be $P(X \ge 8)$ [= 0.0698]	B1	2.3
		(2)	
(b)	These will affect the conclusion (as the null hypothesis should not be rejected) since $P(X \ge 8)$ [= 0.0698] is greater than 0.05	B1	2.4
		(1)	
(c)	$P(X \le 8) = 0.9722 > 0.95 \text{ or } P(X \ge 9) = 0.0277 < 0.05$	M1	2.1
	CR: $\{X \ge 9\}$	A1	1.1b
		(2)	
(d)	awrt <u>0.0278</u>	B1ft	1.1b
		(1)	
		(6 marks)
	Notes		
(a)	 B1: Identifying that ≥ should be > in the alternative hypothesis B1: Identifying that P(X = 8) should be P(X ≥ 8) Stating P(X = 8) is incorrect on its own is insufficient Check for errors identified and corrected next to the question 		
(b)	B1: Will affect conclusion and correct supporting reason		
(c)	M1: For use of tables to find probability associated with critical value $[P(X \le 8)$ or $P(X \ge 9)$ with B(30, 0.15) (may be implied by either correct probability awrt 0.97 or awrt 0.03) or by the correct CR] A1: $[30\ge]X \ge 9$ o.e. e.g. $X > 8$ Allow '9 or more' or 'CR ≥ 9 '		
(d)	B1ft: awrt 0.0278 (allow awrt 2.78%) or correct ft their one-tailed upper CR from B(30, 0.15) to 3s.f		

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom