Surname

Centre Number Candidate Number

Other Names

GCSE – NEW

3410U10-1

CHEMISTRY – Unit 1: Chemical Substances, Reactions and Essential Resources

FOUNDATION TIER

FRIDAY, 16 JUNE 2017 - MORNING

1 hour 45 minutes

For Exa	For Examiner's use only										
Question	Maximum Mark	Mark Awarded									
1.	8										
2.	13										
3.	7										
4.	8										
5.	8										
6.	6										
7.	10										
8.	9										
9.	11										
Total	80										

ADDITIONAL MATERIALS

In addition to this paper you may require a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer **all** questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

Question 6 is a quality of extended response (QER) question where your writing skills will be assessed.

The Periodic Table is printed on the back cover of this paper and the formulae for some common ions on the inside of the back cover.

Answer all questions.

1. (a) The diagrams show three methods used to separate mixtures.

(i)	<u>Underline</u> the property of iron filings which allows method 1 to be used to separate the mixture.	-
	magnetic insoluble in water silvery grey colour	
	high melting point more dense than water	
(ii)	Tick (\checkmark) the box that shows the reason why method 2 can be used to separate alcohol and water. [1	-
	alcohol and water both boil when heated	
	alcohol and water have different boiling points	
	alcohol and water have the same boiling point	
	alcohol and water are both liquids	3410U101
(iii)	Name the process of removing water in method 3 . [1	

3

Turn over.

(iv) The box contains methods for separating mixtures.

......

distillation	chromatography	filtration
alotination	omonacography	maaton

Complete the sentence using a method from the box.

The method used to separate the coloured dyes in the blue pens is called

[1]

3410U101 05

8

Examiner only **2.** *(a)* Atoms contain particles called electrons, protons and neutrons. The diagram shows an atom of boron.

(iv) Atom **B** can be found in Period

Examiner

[1]

(c) The following table shows three substances, their formulae and diagrams that can be used to represent them.

Substance	Formula	Diagram
nitrogen trioxide	NO ₃	
methane	CH ₄	
water	H ₂ O	

(i) Use the information in the table to work out the key being used to represent the different elements in the diagrams. [2]

	is
\bigcirc	is
\bigcirc	is
	is

(ii) **Using the same key** draw a diagram to represent a molecule of carbon dioxide, CO₂. [1]

(d) The chemical formula of phosphoric acid is H₃PO₄.
(i) State how many phosphorus atoms are present in the formula H₃PO₄.
(ii) Give the total number of atoms shown in the formula H₃PO₄.

3410U101 07

Examiner only

melting point = 40 °C boiling point = 600 °C melting point = 60 °C boiling point = 780 °C melting point = 20 °C boiling point = 600 °C

(3410U10-1)

(b) The diagrams show lithium, sodium, potassium and rubidium, **but not necessarily in that order**, reacting separately with cold water.

(iii) Describe **one** safety precaution taken when adding a Group 1 metal to water. [1]

Examiner only

		1	0				
(C)	Group 1 metals rea	act with oxygen to fo	orm meta	al oxides			Examiner only
	Sodium oxide conta	ains the ions Na ⁺ ar	nd O²⁻.				
	Underline the corre	ect formula of sodiur	m oxide.			[1]	
	2N	aO NaO ₂	Na ₂	0	Na ² O		
(d)	Group 1 metals rea	act with chlorine, Cl ₂	2, to form	n metal o	chlorides.		
	Give the letter for chlorine.	the balanced symb	ol equat	tion for	the reactior	n between sodium and [1]	
	Α	Na + Cl ——		NaCl			
	В	2Na + 2Cl —		2NaCl			
	С	2Na + Cl ₂ —		2NaCl			
	D	Na + Cl ₂		NaCl ₂			

7

Letter

BLANK PAGE

11

Turn over.

4. (a) Most water in Wales is sourced from surface water and ground water. Ground water is the water beneath the surface of the Earth, consisting mainly of surface water that has filtered through the rocks. It is the source of water found in springs and wells. Human activity causes surface water to be more contaminated than ground water.

4

The diagram below shows the three main stages in the treatment of surface water before it enters the mains water system on its way to the taps in your home.

Examiner only

		Stage 1	Stage 2	Stage 3	
		sedimentation	filtration		
((i)	Tick (\checkmark) the box that de	scribes what occurs	in stage 1 .	[1]
		large insoluble particles	s sink to the bottom		
		soluble particles are rer	moved		
		small fine insoluble part	ticles are removed		
		fluoride is added to the	water		
(i	ii)	Stage 3 makes water sa State why this makes th	afe to drink. Name the safe to drink	e substance added to v c.	vater in stage 3 . [2]
		Substance			
	ii)	Describe one major ca	ause of surface water	pollution.	[2]
.					

Examiner only

> 3410U101 13

(b) A family uses a water butt to collect rainwater in order to reduce their use of mains water.

They use a total of 450 litres of water on a given day. The chart shows the volumes of mains water and collected rainwater used for various purposes on that day.

(ii) Suggest why it is safe to use rainwater for the uses shown on the right hand side of the chart. [1]

6. Olivia investigated the relative hardness of three samples of water, A, B and C.

She added soap solution to each sample separately and recorded the volume of soap solution needed to get a permanent lather. Her results are shown in the table.

Water sample	Volume of soap solution needed to get a permanent lather (cm ³)
А	1.0
В	14.0
С	11.0

Examiner only Describe how you would repeat this investigation, including enough detail to show that you will be carrying out a fair test. Assuming that you get similar results to Olivia, state and explain the conclusion you would reach. [6 QER]

6

© WJEC CBAC Ltd.

7. The flow chart shows the stages a student carried out to change calcium carbonate (limestone) into calcium hydroxide solution (limewater).

|Examiner only Use the information in the flow chart to answer parts (i) to (iii). (a) Name the type of reaction taking place in stage 1. [1] (i) (ii) Give the **number** of the stage which shows an exothermic reaction. [1] (iii) I. Describe what you would expect to see happen in stage 3. [2] II. The reaction taking place in stage **3** is shown by the following word equation. calcium oxide + water calcium hydroxide Write a balanced **symbol** equation for this reaction. [2]+

19

Describe what you would expect to happen to the limewater. Give a reason for your answer. [2]

| Observa | tion |
 | |
|---------|------|------|------|------|------|------|------|------|------|--|
| Reason | |
 | |

© WJEC CBAC Ltd.

(c) Quicklime is manufactured from limestone in a lime kiln. A manufacturer expected to obtain 5.6 tonnes per 10 tonnes of limestone used. The actual mass of quicklime produced was 5.1 tonnes.
 Calculate the percentage yield of quicklime for this manufacturing process. [2]

percentage yield = %

BLANK PAGE

	The le	ne letters shown are NOT the chemical symbols of the elements.												
Α														в
С											D	Е		
													F	

Choose letters from the diagram to complete the table below.

8.

(a)

	Letter(s)
Two elements in the same group	and
The element which has 12 protons in its nucleus	
The element with a full outer shell of electrons	
The element in Group 2 and Period 2	
The element with the electronic structure 2,8,4	

© WJEC CBAC Ltd.

The following diagram shows an outline of part of the Periodic Table.

[5]

only

Examiner

Examiner only Diagrams 1-5 show the electronic structure of five elements in the Periodic Table. 2 3 1 5 Give the number of the diagram which shows the electronic structure of the element which lies (i) in the Periodic Table, directly **below** to the left of in the Periodic Table. (ii) Nitrogen has two stable isotopes – nitrogen-14 and nitrogen-15. Describe how these isotopes are similar to one another and how they are different. [2]

9

23

(b)

(C)

Turn over.

9. A student carried out an experiment to investigate the speed of the reaction between a **lump** of magnesium carbonate of mass 0.32 g and excess dilute hydrochloric acid at 20 °C.

Examiner

Magnesium carbonate reacts with dilute hydrochloric acid forming carbon dioxide gas. The total volume of carbon dioxide formed was recorded every 5 minutes for 40 minutes.

The results are shown below. The result for 15 minutes is missing.

Time (minutes)	0	5	10	15	20	25	30	35	40
Volume of carbon dioxide formed (cm ³)	0	20	41		79	83	90	90	90

(a) Use the diagram below to find the volume of carbon dioxide gas formed after 15 minutes. [1]

25

(c) Sketch the graph you would expect if the experiment were repeated using 0.32 g of magnesium carbonate **powder** instead of the lump of magnesium carbonate.
 Label this graph Y. [2]

Turn over.

Examiner

(d)	State and explain, using particle theory, the effect of increasing the concentration of the hydrochloric acid. [3]	Examiner only
•••••		
•••••		
•••••		
·····		

(e) The student investigated the same reaction using a different apparatus. A lump of magnesium carbonate was added to excess dilute hydrochloric acid at 20 °C.

27

The change in mass was recorded for 60 minutes and displayed as a graph on a computer screen. The reaction took 40 minutes to complete.

Sketch the graph you would expect to see.

END OF PAPER

11

Examiner

[2]

For continuation only.	Examiner only
© WJEC CBAC Ltd. (3410U10-1)	

BLANK PAGE

BLANK PAGE

POSITIV	EIONS	NEGATIVE IONS		
Name	Formula	Name	Formula	
aluminium	Al ³⁺	bromide	Br ⁻	
ammonium	NH4 ⁺	carbonate	CO3 ²⁻	
barium	Ba ²⁺	chloride	CI	
calcium	Ca ²⁺	fluoride	F ⁻	
copper(II)	Cu ²⁺	hydroxide	OH⁻	
hydrogen	H⁺	iodide	I -	
iron(II)	Fe ²⁺	nitrate	NO ₃ ⁻	
iron(III)	Fe ³⁺	oxide	O ²⁻	
lithium	Li ⁺	sulfate	SO4 ²⁻	
magnesium	Mg ²⁺			
nickel	Ni ²⁺			
potassium	K ⁺			
silver	Ag ⁺			
sodium	Na ⁺			
zinc	Zn ²⁺			

FORMULAE FOR SOME COMMON IONS

THE PERIODIC TABLE	Group 3 4 5 6 7 0	Hydrogen 2 ² Helium	Carbon Nitrogen Oxygen	28 31 32 35.5 Si P Silicon Phosphorus Sulfur Chlorine 14 15 16 17	51 52 55 56 59 53 65 70 73 75 79 80 V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se 80 Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Gemanium Arsenic Selenium Bromine 23 24 25 26 27 28 30 31 32 34 35	93 96 99 101 103 106 108 112 119 122 128 127 Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te 127 127 Niobium Molybdenum Technetium Ruthenium Ruthenium Sliver Cadmium Indium Tin Antimony Tellurium Iodine 41 42 43 44 45 46 47 48 49 50 51 52 53	181 184 186 190 192 195 197 201 204 207 209 210 210 Tantalum W Re Os Ir Pt Au Hg TI Pb Bi Po At At Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury Tantalum Lead Bismuth Polonium At 73 74 75 76 77 78 79 80 81 85 85	Key
					51 V Vanadium 23 24	96 MO Molybdenum 42	181184Ta184TantalumTungsten7374	
				E	45 Sc 21	89 Yttrium 39	139 La Lanthanum 57	
	2					88 Strontium 38		
	~		7 Li Lithium 3	23 Na Sodium	39 Rotassium 19	86 Rb Rubidium 37	133 CS Caesium 55	223 Fr 87

Ar Symbol Name atomic mass

© WJEC CBAC Ltd.

(3410U10-1)