Surname

Centre Number

Other Names

GCSE – NEW

3410UA0-1

CHEMISTRY – Unit 1: Chemical Substances, Reactions and Essential Resources

HIGHER TIER

FRIDAY, 16 JUNE 2017 - MORNING

1 hour 45 minutes

For Exa	aminer's us	e only
Question	Maximum Mark	Mark Awarded
1.	9	
2.	11	
3.	8	
4.	6	
5.	11	
6.	12	
7.	8	
8.	9	
9.	6	
Total	80	

ADDITIONAL MATERIALS

In addition to this paper you may require a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer **all** questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

Question 9 is a quality of extended response (QER) question where your writing skills will be assessed.

The Periodic Table is printed on the back cover of this paper and the formulae for some common ions on the inside of the back cover.

							Ansu	er all	ques	tions.								oniy
1.	(a)	The fo	llowir	ng dia	gram	show	s an	outlin	e of p	art of	the F	Period	ic Tab	ole.				
		Th	e lette	ers sl	hown	are l	NOT t	he ch	nemio	al sy	mbo	ls of t	the el	emer	nts.			
	A	<u> </u>															В	
	C	;											D		Е			
																F		

Choose letters from the diagram to complete the table below.

	Letter(s)
Two elements in the same group	and
The element which has 12 protons in its nucleus	
The element with a full outer shell of electrons	
The element in Group 2 and Period 2	
The element with the electronic structure 2,8,4	

© WJEC CBAC Ltd.

2

Examiner only

[5]

Examiner only

(b) Diagrams 1-5 show the electronic structure of five elements in the Periodic Table.

3

9

3410NA01 03

© WJEC CBAC Ltd.

2. A student carried out an experiment to investigate the speed of the reaction between a **lump** of magnesium carbonate of mass 0.32 g and excess dilute hydrochloric acid at 20 °C.

Examiner

Magnesium carbonate reacts with dilute hydrochloric acid forming carbon dioxide gas. The total volume of carbon dioxide formed was recorded every 5 minutes for 40 minutes.

The results are shown below. The result for 15 minutes is missing.

Time (minutes)	0	5	10	15	20	25	30	35	40
Volume of carbon dioxide formed (cm ³)	0	20	41		79	83	90	90	90

(a) Use the diagram below to find the volume of carbon dioxide gas formed after 15 minutes. [1]

Examiner only

[3]

Plot the results from the table, including your answer to part (a), on the grid below. (b) Draw a suitable line and label this graph X.

100

90

80

70

Volume of carbon dioxide formed (cm^3)

- 60 50 40 30 20 10 0 5 10 15 20 25 30 Ò 35 40 45 Time (minutes)
- Sketch the graph you would expect if the experiment were repeated using 0.32g of (C) magnesium carbonate powder instead of the lump of magnesium carbonate. Label this graph Y. [2]

(d)	State and explain, using particle theory, the effect of increasing the concentration of the hydrochloric acid. [3]	Examiner only

(e) The student investigated the same reaction using a different apparatus. A lump of magnesium carbonate was added to excess dilute hydrochloric acid at 20 °C.

7

The change in mass was recorded for 60 minutes and displayed as a graph on a computer screen. The reaction took 40 minutes to complete.

Sketch the graph you would expect to see.

[2]

Examiner

3. (a) One out of six people today do not have access to safe fresh water. Estimates suggest fresh water supplies will be a major problem for half the countries of the world by 2025 and by 2050 about 75 % of the world's population will experience a serious scarcity of the resource.

As the world's population increases not only will the demand for drinking water and water for sanitation increase, but the demand for water to produce more food will increase. As climate change makes rainfall less predictable and droughts more common, a growing number of countries are turning to desalination.

One method of desalination, called reverse osmosis, uses a thick membrane to filter salt from seawater. But this system requires an extremely high pressure to force water through the membrane and therefore uses a lot of energy.

Researchers in the USA have come up with a new approach using a different kind of filtration material - sheets of graphene - a one-atom-thick form of the element carbon. This new material can be far more efficient and possibly less expensive than existing desalination methods. Sheets of graphene are perforated with precisely-sized holes which only let the water molecules through.

	9	
(i)	Tick (\checkmark) the box next to the main reason why countries are building desalination plants.	
	water is becoming scarce	
	each person is drinking more water	
	climate change affects the availability of drinking water	
(ii)	Tick (\checkmark) the statement which best explains how graphene sheets desalinate water. [1]	
	water molecules contain atoms and not ions	
	sheets contain holes which are bigger than ions	
	sheets contain holes which are bigger than water molecules but smaller than sodium and chloride ions	3410NA01
	sheets contain holes which let molecules through but not ions	e e
	molecules are smaller than ions	
	total volume of water on the Earth is 1.4×10^9 km ³ , 97 % of which is seawater. Mos e remaining 3 % is bound up in ice at the poles, leaving 0.3 % available as fresh water	
Calc form	ulate the volume of the Earth's available fresh water. Give your answer in standarc [2]	
	volume of available fresh water = km ³	

3410NA01 09

© WJEC CBAC Ltd.

(b)

(3410UA0-1)

(c) One piece of survival equipment found on life rafts is a 'solar still'. Solar stills are used to remove soluble salts from seawater to form drinkable water.

Examiner only

Examiner only

3410NA01 11

4.

(a)	Limestone quarrying is an important business in the UK. Quarrying creates jobs in areas where there are often limited opportunities. There is a huge demand for the products of quarrying, such as building stone and cement. Good roads and rail links are needed for transporting the products of quarrying. Thousands of people are employed in quarrying and related industries.	
	Many people argue against the opening of a quarry in their area despite all the benefits of limestone quarrying. Explain two reasons local people might use in an attempt to stop the opening of a new quarry in their area. [2]	
·····		
(b)	When limestone is heated in a lime kiln thermal decomposition takes place.	
	Write a balanced symbol equation for this reaction. [1]	
(C)	Calcium silicide is a compound containing calcium and silicon only. A sample of calcium silicide was found to contain 2.0 g of calcium and 2.8 g of silicon.	
	Calculate the simplest formula for this compound. You must show your working. [3]	
	Simplest formula	
		6

Turn over.

Examiner only 5. Gwyn carried out an experiment to find the solubility of potassium nitrate at room (a) temperature, 25 °C. The method he used is shown in stages 1-3. Stage 1 He added solid potassium nitrate to 50 cm³ of water until a saturated solution was formed. Stage 2 He pipetted 25 cm³ of the saturated solution into a pre-weighed evaporating basin. He put the basin and the solution into a warm oven. Stage 3 He removed the basin from the oven and allowed it to cool. He weighed the basin and crystals after 2 hours. His results are shown below. Mass of evaporating basin = 42.6 gMass of evaporating basin and potassium nitrate crystals = 54.2g(i) State what is meant by a *saturated* solution. [1] Use Gwyn's results to calculate the solubility of potassium nitrate in g/100g of (ii) water. [2]

12

solubility = g/100g of water

© WJEC CBAC Ltd.

Examiner only		(iii)
	Gwyn was asked to find out if sodium chloride is more soluble in water than potassium nitrate. State which variable Gwyn must keep the same in his experiment in order for him to be able to compare the two solubilities. [1]	(iv)
	The solubility of potassium bromide at 20 °C is 64g/100g of water. Calculate the mass of solid that forms when a solution containing 43.9g of potassium bromide in 50g of water is cooled to 20 °C. [2]	(i)
	mass =	(ii)
11	number of moles = mol	

(3410UA0-1)

(b)

6.

© WJEC CBAC Ltd.

Examiner

(b)

Turn over.

7.

(b) Describe and explain a method to test whether a water sample is soft water, temporary hard water or permanent hard water.

(You do not need to include reference to fair testing in your answer)

8

(3410UA0-1)

8. (a) (i) The table below shows results of tests carried out on three white Group 1 compounds, A, B and C.

The flame tests were carried out on solids and the silver nitrate tests on solutions of the compounds.

Test	Compound A	Compound B	Compound C
Flame test	red	yellow	lilac
Add silver nitrate solution	white precipitate	cream precipitate	yellow precipitate

Use the information in the table to identify the compounds.

- (ii) The symbol equation represents the reaction occurring between solutions of silver nitrate and magnesium chloride.

 $2AgNO_3(aq) + MgCl_2(aq) \rightarrow Mg(NO_3)_2(aq) + 2AgCl(s)$

Write the **ionic** equation for the reaction. Include state symbols in your answer. [3]

Examiner only

[2]

(b) **W**, **X**, **Y** and **Z** represent the halogens fluorine, chlorine, bromine and iodine, but not necessarily in that order.

The diagrams below show some reactions of halogens **W** and **X**.

Examiner

Explain what happens at destructive and constructive plate boundaries. Diagrams may be included in your answer.	[6 QER]

9. The diagram shows the movement of the major tectonic plates.

Examiner only

(3410UA0-1)

BLANK PAGE

21

Turn over.

For continuation only.	Examiner only
© W.IEC. CBAC. I td. (3410UA0-1)	

POSITIV	EIONS	NEGATI	VE IONS
Name	Formula	Name	Formula
aluminium	Al ³⁺	bromide	Br ⁻
ammonium	NH4 ⁺	carbonate	CO ₃ ²⁻
barium	Ba ²⁺	chloride	CI
calcium	Ca ²⁺	fluoride	F ⁻
copper(II)	Cu ²⁺	hydroxide	OH⁻
hydrogen	H⁺	iodide	I -
iron(II)	Fe ²⁺	nitrate	NO ₃ ⁻
iron(III)	Fe ³⁺	oxide	0 ²⁻
lithium	Li ⁺	sulfate	SO4 ²⁻
magnesium	Mg ²⁺		
nickel	Ni ²⁺		
potassium	K ⁺		
silver	Ag ⁺		
sodium	Na ⁺		
zinc	Zn ²⁺		

FORMULAE FOR SOME COMMON IONS

THE PERIODIC TABLE	Group 3 4 5 6 7 0	Hydrogen 2 ² Helium	11121416BCN0BoronCarbonNitrogenOxygen5677	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	48 51 52 55 56 59 53 65 70 73 75 79 80 Ti V Cr Mn Fe Co Ni Cu Zn Ga Ga 75 79 80 Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium 6emanium Arsenic Selenium Bromine 22 23 24 25 26 27 28 29 33 34 35 <td< th=""><th>91 93 96 99 101 103 106 108 112 119 122 128 127 Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te 127 127 Zirconium Niobium Molybdenum Technetium Ruthenium Ruthenium Ruthenium Ralladium Silver Cadmium Indium Tin Antimony Tellurium Iodine 40 41 42 43 44 45 46 47 48 49 50 51 52 53</th><th>179 181 184 186 190 192 195 197 201 204 207 209 210 210 Hf Ta W Re Os Ir Pt Au Hg TI Pb Bi Po At Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Lead Bismuth Polonium At 72 73 74 75 76 77 78 79 80 81 84 85</th><th>c c binm Key</th></td<>	91 93 96 99 101 103 106 108 112 119 122 128 127 Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te 127 127 Zirconium Niobium Molybdenum Technetium Ruthenium Ruthenium Ruthenium Ralladium Silver Cadmium Indium Tin Antimony Tellurium Iodine 40 41 42 43 44 45 46 47 48 49 50 51 52 53	179 181 184 186 190 192 195 197 201 204 207 209 210 210 Hf Ta W Re Os Ir Pt Au Hg TI Pb Bi Po At Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Lead Bismuth Polonium At 72 73 74 75 76 77 78 79 80 81 84 85	c c binm Key
					45 Sc 21	89 Yttrium 39	139 La Lanthanum 57	
	2			a Magnesium 124 124 12		0 88 Sr ium Strontium 38		
	~		7 Li Lithium 3	23 Né Sodii 11	39 Potass 19	86 Rb 37 37	13; C5 Caesi	223 Fr Francium 87

Ar Symbol Name atomic mass