Surname

Centre Number

0

wjec cbac

Other Names

GCSE – NEW

3410U10-1

CHEMISTRY – Unit 1: Chemical Substances, Reactions and Essential Resources

FOUNDATION TIER

WEDNESDAY, 13 JUNE 2018 - MORNING

1 hour 45 minutes

For Examiner's use only				
Question	Maximum Mark	Mark Awarded		
1.	9			
2.	6			
3.	7			
4.	8			
5.	10			
6.	9			
7.	5			
8.	6			
9.	6			
10.	9			
11.	5			
Total	80			

ADDITIONAL MATERIALS

In addition to this examination paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page at the back

of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

Question 8 is a quality of extended response (QER) question where your writing skills will be assessed.

The Periodic Table is printed on the back cover of this paper and the formulae for some common ions on the inside of the back cover.

© WJEC CBAC Ltd.

(C)	Identify which dye, A-D , contains the banned substance. Give a reason for your answer. [2]	Examiner only
	Reason	
		6
		_
		3410U101 05
05	© WJEC CBAC Ltd. (3410U10-1) Turn over.	

(i)	A student was given a solution of sodiun			
	he could use in order to obtain a sampl how the method works.	e of pure water from t	ine solution. Explain	
	Method			
<u>.</u>	Explanation			
(ii)	500g of solution was found to contair percentage of sodium chloride in the sol		oride. Calculate the [2]	
		Percentage =	%	
Grou	up 7 ions, chloride, bromide and iodide, ca	-		
	nplete the following table to show the colo	n be identified using s	ilver nitrate solution.	
Com	nplete the following table to show the cold	n be identified using s	ilver nitrate solution. s produced by these	
Com	nplete the following table to show the cold	n be identified using s ours of the precipitates	ilver nitrate solution. s produced by these	
Com	Group 7 ion Co	n be identified using s ours of the precipitates lour of precipitate	ilver nitrate solution. s produced by these	
Com	Group 7 ion Co	n be identified using s ours of the precipitates lour of precipitate	ilver nitrate solution. s produced by these	
Com	Group 7 ion Co chloride	n be identified using s ours of the precipitates lour of precipitate	ilver nitrate solution. s produced by these	
Com	Group 7 ion Co chloride	n be identified using s ours of the precipitates lour of precipitate	ilver nitrate solution. s produced by these	
Com	Group 7 ion Co chloride	n be identified using s ours of the precipitates lour of precipitate	ilver nitrate solution. s produced by these	
Com	Group 7 ion Co chloride	n be identified using s ours of the precipitates lour of precipitate	ilver nitrate solution. s produced by these	
Com	Group 7 ion Co chloride	n be identified using s ours of the precipitates lour of precipitate	ilver nitrate solution. s produced by these	

3410U101 07

			8		
The f	ollowi	ng table shows the	composition of the atmo	sphere.	
		Gas	Chemical formula	Percentage found in the atmosphere (%)	
		argon	Ar	0.93	
		carbon dioxide	CO ₂	0.0360	
		helium	Не	0.0005	
		hydrogen	H ₂	0.00005	
		methane	CH4	0.00017	
		neon	Ne	0.0018	
		nitrogen	N ₂	78.08	
		nitrous oxide	N ₂ O	0.00003	
		oxygen	O ₂	20.95	
		ozone	O ₃	0.000004	
Use t	the tal	ble to answer parts	(a) and (b).		
(a)	(i)		that occur as single ator	ns.	[1]
	(ii)	Name two eleme	nts that occur as molecu	les.	[1]
	(iii)	Name the gas tha	t has the lowest percen	tage.	[1]
	•••••				

4.

Examiner only

The rate was investigated using three different catalysts. The results are shown in the table.

Time (c)	Volu	me of gas collected (cm ³)
Time (s)	Catalyst 1	Catalyst 2	Catalyst 3
0	0	0	0
20	2	20	8
40	4	34	15
60	6	38	23
80	8	40	30
100	10	40	36

(i) State which is the **least** effective catalyst. Give a reason for your answer. [1]

	Examine
 (iv) Another student claimed that he could collect more accurate results using th following apparatus. 	only
glass plate separating hydrogen peroxide from catalyst before reaction starts	
Suggest how this apparatus could improve the accuracy of the results. [2	:]
	10
	_
12 © WJEC CBAC Ltd. (3410U10-1)	

BLANK PAGE

13

PLEASE DO NOT WRITE ON THIS PAGE

6. (a) A student investigated the decomposition of three different metal carbonates.
 She measured the time taken for limewater to turn milky using the following apparatus.
 sample of metal carbonate
 HEAT

Three samples of each metal carbonate were tested. Her results are shown in the table.

limewater

Motol corbonato	Tim	ne taken for limev	vater to turn milky	/ (S)
Metal carbonate	Sample 1	Sample 2	Sample 3	Mean
copper(II) carbonate	15	25	17	
zinc carbonate	54	52	53	53
calcium carbonate	195	200	190	195

(i) Calculate the mean time taken for limewater to turn milky on heating copper(II) carbonate. **Show your working.** [2]

Mean time = s

© WJEC CBAC Ltd.

Examiner only Place the carbonates in order of stability giving a reason for your answer. [2] (ii) Ι. Most stable Least stable Reason Explain the order of stability of the carbonates. [1] П. Complete the following symbol equation for the decomposition of copper(II) (iii) carbonate. [2] $CuCO_3 \longrightarrow$ + Calculate the relative formula mass, M_r , of copper(II) carbonate, CuCO₃. (b) [2] $A_r(C) = 12$ $A_r(O) = 16$ $A_r(Cu) = 63.5$ *M*_r = 9

7. The following information is taken from some articles about global warming.

Greenhouse gases such as carbon dioxide keep heat close to the Earth's surface making it a suitable temperature for life. Global warming is an increase of the Earth's mean surface temperature due to the overproduction of greenhouse gases by burning fossil fuels such as gas, petrol and oil. Deforestation also contributes to this. With the growth of industry in the 1900s, humans began burning more fossil fuels to run our cars, trucks and factories. There is more carbon dioxide in the atmosphere today than at any point in the last 800,000 years.

The following charts show the mean global temperature every decade since the 1880s, the amount of carbon dioxide in the atmosphere from 1750-2010 and the main sources of carbon dioxide production today.

© WJEC CBAC Ltd.

Examiner only

BLANK PAGE

19

PLEASE DO NOT WRITE ON THIS PAGE

Soap solution was added 1 cm³ at a time to each sample and the volume required to produce a permanent lather on shaking was recorded. Each sample was tested before and after boiling. The results are shown in the table.

Motor comple	Volume of soap solution required (cm ³)		
Water sample	Before boiling	After boiling	
А	1	1	
В	10	10	
С	15	1	
D	15	8	

(a)	(i)	State which water sample contains only temporary hardness. Explain you	
		answer. [2]]
		Water sample	
	<u>.</u>	Explanation	
	 (ii)	Give one similarity in the composition of temporary and permanent hard water. [1]]
b)	Disc	uss the benefits and drawbacks of living in a hard water area. [3]]
			•

(a)	(i)	Give the temperature at which the solubility of potassium nitrate and potassiur bromide is the same.
		°C
	(ii)	Calculate the mass of solid potassium nitrate that would form if a saturated solutio in 200g of water were cooled from 100 °C to 20 °C.
		Mass =
	(iii)	Suggest why a student may be surprised at the temperature range shown on th solubility curves.
(b)	(i)	Give the symbols of the ions of Group 1 elements present in the compounds show on the grid.
	(ii)	Explain how these ions are formed from their atoms.
(C)		ssium nitrate reacts with aluminium hydroxide to produce aluminium nitrate an ssium hydroxide.
	Bala	nce the symbol equation for the reaction taking place. [1
		KNO ₃ + AI(OH) ₃ \longrightarrow AI(NO ₃) ₃ + KOH

© WJEC CBAC Ltd.

BLANK PAGE

25

PLEASE DO NOT WRITE ON THIS PAGE

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examine only

(3410U10-1)

© WJEC CBAC Ltd.

POSITIVE IONS		NEGATI	VE IONS	
Name	Name Formula		Formula	
aluminium	Al ³⁺	bromide	Br ⁻	
ammonium	NH_4^+	carbonate	CO3 ²⁻	
barium	Ba ²⁺	chloride	CI	
calcium	Ca ²⁺	fluoride	F⁻	
copper(II)	Cu ²⁺	hydroxide	OH⁻	
hydrogen	H⁺	iodide	1-	
iron(II)	Fe ²⁺	nitrate	NO ₃ ⁻	
iron(III)	Fe ³⁺	oxide	O ²⁻	
lithium	Li ⁺	sulfate	SO4 ²⁻	
magnesium	Mg ²⁺			
nickel	Ni ²⁺			
potassium	K ⁺			
silver	Ag ⁺			
sodium	Na ⁺			
zinc	Zn ²⁺			

FORMULAE FOR SOME COMMON IONS

					28			
	0	4 Helium 2	20 Neon 10	40 Ar Argon 18	84 Krypton 36	131 Xe Xenon 54	222 Rn Radon 86	
	~		19 F Fluorine 9	35.5 CI Chlorine	80 Br 35	127 lodine 53	210 At Astatine 85	1
	9		16 O 8 8	32 Sulfur 16	79 Selenium 34	128 Te Tellurium 52	210 Po 84	
	2		14 Nitrogen 7	31 Phosphorus 15	75 As Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth 83	
	4		12 Carbon 6	28 Silicon 14	73 Germanium 32	119 Sn Tin 50	207 Pb Lead 82	1
	က		11 B 5	27 Al 13	70 Ga Gallium 31	115 In Indium 49	204 TI Thallium 81	
щ					65 Zn Zinc	112 Cd Cadmium 48	201 Hg Mercury 80	
TABL					63.5 Cu Copper 29	108 Ag Silver 47	197 Au Gold 79	
E PERIODIC TABLE					59 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78	
RIOI					⁵⁹ Co Cobalt	103 Rh Rhodium 45	192 Ir Iridium 77	
EPE	dno	Le]		56 Fe Iron 26	101 Ruthenium 44	190 Osmium 76	Key
Ŧ	Gro	Hydrogen			55 Mn Manganese 25	99 TC Technetium	186 Re Rhenium 75	
					52 Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74	
					51 V Vanadium 23	93 Nb A1 41	181 Ta Tantalum 73	
					48 Titanium 22	91 Zr Zirconium 40	179 Hf Hafnium 72	
					45 Sc 21	$\overset{89}{_{_{_{_{_{_{}}}}}}}$	139 La Lanthanum 57	227 Actinium 89
	0		9 Be Beryllium	24 Mg 12 12	40 Calcium 20	88 Strontium 38	137 Ba Barium 56	226 Ra Radium 88
			7 Li Lithium 3	23 Na Sodium	39 A Rotassium 19	86 Rb Rubidium 37	133 Cs 55	223 Fr Francium 87

 A_r relative atomic mass Symbol Name atomic number z

