Surname

Centre Number

wjec cbac

Other Names

GCSE – NEW

3410UA0-1

CHEMISTRY – Unit 1: Chemical Substances, Reactions and Essential Resources

HIGHER TIER

WEDNESDAY, 13 JUNE 2018 - MORNING

1 hour 45 minutes

For Exa	aminer's us	e only
Question	Maximum Mark	Mark Awarded
1.	6	
2.	9	
3.	5	
4.	9	
5.	11	
6.	6	
7.	10	
8.	10	
9.	8	
10.	6	
Total	80	

ADDITIONAL MATERIALS

In addition to this examination paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

Question 6 is a quality of extended response (QER) question where your writing skills will be assessed.

The Periodic Table is printed on the back cover of this paper and the formulae for some common ions on the inside of the back cover.

Soap solution was added 1 cm³ at a time to each sample and the volume required to produce a permanent lather on shaking was recorded. Each sample was tested before and after boiling. The results are shown in the table.

Motor comple	Volume of soap sol	ution required (cm ³)
Water sample	Before boiling	After boiling
Α	1	1
В	10	10
С	15	1
D	15	8

(i)		
(ii)	Give one similarity in the composition of temporary and permanent hard water. [1]	
Disc	cuss the benefits and drawbacks of living in a hard water area. [3]	
		3410UA01 03
		6
	(ii) Disc	answer. [2] Water sample Explanation (ii) Give one similarity in the composition of temporary and permanent hard water. [1] Discuss the benefits and drawbacks of living in a hard water area. [3]

© WJEC CBAC Ltd.

(3410UA0-1)

(a)	(i)	Give the temperature at which the solubility of potassium nitrate and potassium bromide is the same. [1]	Examiner only
	(ii)	C Calculate the mass of solid potassium nitrate that would form if a saturated solution in 200g of water were cooled from 100 °C to 20 °C. [3]	
	(iii)	Mass =	
(b)	(i)	Give the symbols of the ions of Group 1 elements present in the compounds shown on the grid.	3410UA01 05
	(ii) 	Explain how these ions are formed from their atoms. [2]	
(C)		assium nitrate reacts with aluminium hydroxide to produce aluminium nitrate and ssium hydroxide.	
	Bala	Ince the symbol equation for the reaction taking place. [1] $KNO_3 + AI(OH)_3 \longrightarrow AI(NO_3)_3 + KOH$	
			9
05		© WJEC CBAC Ltd. (3410UA0-1) Turn over.	

7

Examiner only Dilute hydrochloric acid reacts with sodium thiosulfate to make the products shown in the 4. (a) equation. (aq) + 2HCI(aq) \longrightarrow 2NaCI(aq) + SO₂(g) + S(s) + H₂O(I) ? Use the equation to work out the formula of sodium thiosulfate. (i) [1] Formula (ii) The symbol (aq) in the equation tells us that the substances are aqueous. What is meant by this? [1] (iii) The rate of this reaction can be studied as shown in the diagram. add dilute acid and start stopwatch sodium thiosulfate solution stop stopwatch when cross is no longer visible Use information from the equation to explain why the cross disappears. [2]

© WJEC CBAC Ltd.

A student studied the effect of temperature on the rate of this reaction. He obtained the (b) following results. Time taken for cross to disappear (s) Temperature (°C) 1 2 3 Mean 129 15 130 128 129 30 53 53 53 53 24.3 45 21 29 23 60 7 7 6 6.7 Another student said that one of the mean values was incorrect. (i) Identify the incorrect mean. Give your reasoning. [2] State what conclusion can be drawn about the effect of temperature on the rate of (ii) this reaction. Explain your conclusion using particle theory. [3]

9

Turn over.

Examiner only

			F		, , ,	
following descr A the				×		[3]
	element with	the electronic	c structure	×) *	
	element with			×) *	
B the		roup 2 and Pe	eriod 4	n-metallic pro) * operties	
B the C an e	element in Gr element that s	roup 2 and Pe shows both m	eriod 4 etallic and no			ises.
B the	element in Gr element that s	roup 2 and Pe shows both m	eriod 4 etallic and no			ases.
B the C an e	element in Gr element that s	roup 2 and Pe shows both m	eriod 4 etallic and no			ases.
B the C an e b) The following ta	element in Gr element that s able shows th	roup 2 and Pe shows both m ne atomic num	eriod 4 etallic and no nbers and boi	ling points of	the inert ga	ases.
B the C an e b) The following ta Inert gas	element in Gr element that s able shows th helium	roup 2 and Pe shows both m ne atomic num neon	eriod 4 etallic and no nbers and boi argon	ling points of the krypton	the inert ga	ises.

Boiling point (°C) -269 -246 -186 -153 -108 Boiling point (K) 4 27 120 165 Use the information in the table to calculate the boiling point of argon in K. [2] Boiling point =	Inert gas	helium	neon	argon	krypton	xenon	
Use the information in the table to calculate the boiling point of argon in K. [2] Boiling point =	Boiling point (°C)	-269	-246	-186	-153	-108	
Boiling point =	Boiling point (K)	4	27		120	165	
d) Give one use of argon. Explain in terms of electronic structure why it is used for this	Use the inform	ation in the tab	ole to calcula	te the boiling	point of argon	in K.	[2]
d) Give one use of argon. Explain in terms of electronic structure why it is used for this purpose.				E	Boiling point =		K
							••••••

6.	Limestone is an important raw material. It can be used as a building material or converted into quicklime and slaked lime.	Examiner only
	Describe and explain the sequence of reactions carried out in the laboratory to convert limestone into slaked lime. [6 QER]	
		A01
		3410UA01
		6
	13 © WJEC CBAC Ltd. (3410UA0-1) Turn over.	

3410UA01 13

© WJEC CBAC Ltd.

(3410UA0-1)

7. (a)			14 known as the halogens. The following table shows the observations ree members of the group react with hydrogen.
		Halogen	Observations
		fluorine	explodes in cold and dark
		chlorine	explodes in sunlight
		bromine	small explosion when ignited with a flame
	(i) 		edge of electronic structure to explain why all the halogens react in d why they react more slowly on going down the group. [3]
	 (ii)	silicon dioxide. Balance the sym dioxide.	e is highly corrosive and can be used to etch glass which is mainly bol equation for the reaction between hydrogen fluoride and silicon [1]
	(iii)	Calcium fluoride	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

		Examin
(b)	Chlorine reacts with aluminium to produce aluminium chloride.	only
	A sample of aluminium chloride of mass 26.70 g was found to contain 5.45 g of aluminium. Calculate the simplest formula of this chloride of aluminium.	
	You must show your working. [3]	
	$A_{\rm r}({\rm AI}) = 27$ $A_{\rm r}({\rm CI}) = 35.5$	
	Formula	
		10
		_]
15	© WJEC CBAC Ltd. (3410UA0-1) Turn over.	

		extracted from sodium chloride.
(a)	The	overall reaction taking place is shown in the equation below.
		$2NaCl \longrightarrow 2Na + Cl_2$
	(i)	When carrying out the reaction 120 kg of sodium chloride was found to produce 38.05 kg of sodium.
		Calculate the maximum possible mass of sodium that could be produced and use this figure to calculate the percentage yield of this reaction. [4]
		$A_{\rm r}({\rm Na}) = 23$ $A_{\rm r}({\rm Cl}) = 35.5$
		Maximum possible mass = kg
		Percentage yield =%
	(ii)	Suggest a reason why the yield is less than 100%. [1]
	 (iii)	Suggest why this reaction must be carried out under dry conditions. [1]
	••••••	

	Isotope	Percentage present in sample (%)	
	lithium-6	7.59	
	lithium-7	92.41	
(i)	Calculate the re significant figures	lative atomic mass (A _r) of lithium. Give your answer to th s.	hree [3]
	$A_{\rm r} = \frac{({\rm isotop})}{2}$	be 1 mass × abundance) + (isotope 2 mass × abundance) 100	
(ii)	State the differen	A_r =	[1]
()			
······			

Metal	Temperature at which the carbonate decomposes (°C)	Temperature at which the nitrate decomposes (°C)	
magnesium	117	89	
calcium	178	561	
strontium	235	570	
barium	267	700	
Describe the	trends in the stabilities of the Group	2 carbonates and nitrates.	[3
	onate decomposes it produces carb e carried out to show that carbo		
that could be			ing the
that could be reaction.		n dioxide gas is produced dur	ing the
that could be reaction. When calciur NO ₂ .	e carried out to show that carbo	n dioxide gas is produced dur	ing the
	magnesium calcium strontium barium	carbonate decomposes (*C)magnesium117calcium178strontium235barium267	carbonate decomposes (*C)nitrate decomposes (*C)magnesium11789calcium178561strontium235570

niner nly

19

10. Fluorine exists naturally as the fluoride ion. It is found in soil, water, foods and several minerals, such as fluorapatite and fluorite.

Fluoride ion concentration in seawater averages 1.3 ppm (parts per million). In fresh water, the natural range is typically between 0.01 and 0.3 ppm. In some parts of the world, fresh water contains fluoride ion levels which are dangerous and can lead to health problems.

In the early 1930s, scientists found that people who were brought up in areas with naturally fluoridated water had up to two-thirds fewer cavities compared to those who lived in areas where the water was not fluoridated. Several studies since then have repeatedly shown that when fluoride is added to people's drinking water in areas where natural levels are low, tooth decay decreases.

However, many European countries which do not fluoridate their water do not have a higher incidence of dental decay than countries which do so. It was also found that in Germany and Finland, decay rates either remained stable or continued in their downward trend after they stopped adding fluoride to their drinking water.

Figure 1 shows data about the effect of fluoridation of drinking water on the mean number of decayed, missing and filled teeth (DMFT) and the amount of fluorosis seen.

Figure 2 shows the change in mean DMFT in three regions of Australia over a four year period.

Fluoride ion content of drinking water (ppm)

Figure 1

(C)	Tick (<i>J</i>) the box which gives one definite conclusion that can be drawn using only the	Examiner only
(0)	data in Figure 2 . [1]	
	Fluoridation has no effect on levels of decay	
	People have reduced their intake of sugary foods over this period	
	More than one factor affects levels of decay	
	Fluoridation is the main cause of falling levels of decay	
(d)	'Mass medication' is an argument often given to oppose fluoridation of water supplies. Explain what is meant by the term <i>mass medication</i> . [1]	
	END OF PAPER	6

23

24

25

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only
		1
		1

© WJEC CBAC Ltd.

POSITIV	EIONS	NEGATIVE IONS			
Name	Formula	Name	Formula		
aluminium	Al ³⁺	bromide	Br ⁻		
ammonium	NH4 ⁺	carbonate	CO ₃ ²⁻		
barium	Ba ²⁺	chloride	CI		
calcium	Ca ²⁺	fluoride	F ⁻		
copper(II)	Cu ²⁺	hydroxide	OH⁻		
hydrogen	H⁺	iodide	1-		
iron(II)	Fe ²⁺	nitrate	NO ₃ ⁻		
iron(III)	Fe ³⁺	oxide	0 ²⁻		
lithium	Li ⁺	sulfate	SO4 ²⁻		
magnesium	Mg ²⁺				
nickel	Ni ²⁺				
potassium	K ⁺				
silver	Ag ⁺				
sodium	Na ⁺				
zinc	Zn ²⁺				

FORMULAE FOR SOME COMMON IONS

27

Turn over.

						1	1		
0	$^{4}_{Helium}$	Neon 10	40 Ar 18	84 Krypton 36	131 Xe 54	222 Rn Radon 86			
~		19 F Fluorine 9	35.5 CI Chlorine 17	80 Br Bromine 35	127 lodine 53	210 At Astatine 85			
9		16 O Oxygen 8	32 S Sulfur 16	79 Selenium 34	128 Te Tellurium 52	210 PO 84			
Ŋ		14 Nitrogen 7	31 Phosphorus	75 As Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth			
4		12 C Carbon 6	28 Silicon 14	73 Ge Germanium 32	119 Sn 50	207 Pb Lead 82			
ო		11 B 5	27 Al Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 TI Thallium 81			
ш				65 Zn Zinc 30	112 Cadmium 48	201 Hg Mercury 80			
'ABL				63.5 Cu Copper 29	108 Ag Silver 47	197 Au Gold 79			
				59 Nickel 28	106 Pd Palladium 46	195 Pt 78			
RIOI	0					59 Co Cobalt 27	103 Rhodium 45	Rhodium 45 192 Ir 77	
HE PERIODIC TABLE			56 Fe Iron 26	101 Ruthenium 44	190 Osmium 76	Key			
THE I Group	Hydrogen			55 Mn Manganese 25	99 TC Technetium 43	186 Re Rhenium 75			
				52 Cr 24 24	96 Molybdenu 42	184 W Tungsten 74			
				51 V 23 23	93 Nobium 41	181 Ta Tantalum 73			
				48 Ti Z2	91 Zr Zirconium 40	179 Hf Hafnium 72			
				45 Sc Scandium 21	89 Yttrium 39	139 La Lanthanum 57	227 Actinium 89		
0		9 Be Beryllium	24 Mg Magnesium	40 Ca Calcium 20	88 Strontium 38		226 Radium 88		
		7 Li Lithium 3	23 Na Sodium	39 Rotassium 19	86 Rb Rubidium 37	133 Cs Caesium 55	223 Fr Francium 87		
28		© WJEC CBAC		(3410UA0-1)					

relative atomic mass atomic number Ar Symbol Name Z