Centre Number

Other Names

wjec

GCSE

3410UA0-1

\$19-3410UA0-1

WEDNESDAY, 12 JUNE 2019 – MORNING

CHEMISTRY – Unit 1: Chemical Substances, Reactions and Essential Resources

HIGHER TIER

1 hour 45 minutes

For Examiner's use only					
Question	Maximum Mark	Mark Awarded			
1.	7				
2.	7				
3.	9				
4.	6				
5.	7				
6.	7				
7.	9				
8.	12				
9.	6				
10.	10				
Total	80				

ADDITIONAL MATERIALS

In addition to this examination paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

Question 9 is a quality of extended response (QER) question where your writing skills will be assessed.

The Periodic Table is printed on the back cover of this paper and the formulae for some common ions on the inside of the back cover.

Answer all questions.

1. (a) The following table shows some information about Group 1 elements.

Metal	Melting point (°C)	Boiling point (°C)	Density (g/cm ³)	Reaction with chlorine
lithium	180	1342	0.54	reacts slowly to make a white salt
sodium	97	883	0.97	burns vigorously with a yellow flame to make a white salt
potassium	63	759	0.88	reacts violently to make a white salt
rubidium	39	688	1.53	explosive reaction
caesium	28	671	1.93	explosive reaction

(i) Describe the trend in density going down the group.

[1]

(ii) Explain the difference in reactivity down the group in terms of electronic structure.

[2]

© WJEC CBAC Ltd.

Examiner only *(b)* The apparatus below can be used to demonstrate the reaction between sodium and chlorine.

3

(i) Apart from the use of safety goggles, state **one** safety precaution that needs to be followed when using **each** of these elements. [2]

Element	Safety precaution
sodium	
chlorine	

(ii) Complete and balance the symbol equation for the reaction that takes place between sodium and chlorine. [2]

7

3410UA01 03

Examiner

© WJEC CBAC Ltd.

(3410UA0-1)

© WJEC CBAC Ltd.

3410UA01 07

5. The following table shows the solubility of potassium permanganate in water at temperatures between 30 °C and 60 °C.

Temperature (°C)	Solubility (g/100g of water)
30	9.0
35	10.8
40	12.5
45	14.4
50	16.8
55	19.2
60	22.2

© WJEC CBAC Ltd.

6. This question is about the uses of gases present in air.

Air is a mixture of different gases. Each gas has different uses. The gases are present in different amounts as shown below.

Gas	Amount present in air	Boiling point (°C)
N ₂	78.04%	-195.8
0 ₂	20.95%	-183.0
CO ₂	0.03%	-78.5
Ar	0.93%	-189.2
Ne	18 ppm	-246.0
Не	5 ppm	-268.9
Kr	1 ppm	-152.3
Хе	0.08 ppm	-107.1
H ₂	0.5 ppm	-257.9
CH ₄	2 ppm	-164.0
N ₂ O	0.5 ppm	-88.5

ppm = parts per million

Separating a complex mixture!

Air is firstly compressed and cooled which turns it into a liquid. Carbon dioxide freezes and is removed as solid dry ice. The rest of the mixture goes on to a fractionating column where it is slowly warmed allowing most of the substances to be separated.

(a)	Tick (<i>J</i>) the main reason why hydrogen is not separated during the fractional distillation of liquid air.
	hydrogen is a highly reactive gas
	only 0.5 ppm of hydrogen is present
	hydrogen does not become liquid on cooling to -200 °C
	hydrogen has a higher boiling point than helium
(b)	Tick (\checkmark) the reason why carbon dioxide becomes a solid during the first part of the process. [1]
	carbon dioxide has a boiling point above -200 °C
	carbon dioxide has a melting point above -200 °C
	carbon dioxide has a melting point below -200 °C
	carbon dioxide has a boiling point below -200 °C
(C)	Describe, in terms of boiling points, how nitrogen, argon and oxygen are separated during fractional distillation. [3]

(*d*) The noble gases are present in very small quantities in the air. The amount of each gas produced per year is shown in the table.

Noble gas	World production (tonnes per year)
helium	28000
neon	1000
argon	700 000
krypton	8
xenon	0.6

12

Use the data to calculate the number of tonnes of air needed to produce 700000 tonnes of argon. Give your answer in **standard form**. [2]

Mass of air needed = tonnes

Examiner

BLANK PAGE

13

PLEASE DO NOT WRITE ON THIS PAGE

	(i)	Compare the n	uclei of each of these isotopes.		[1]
	(ii)		ation to calculate the relative atom swer to three significant figures.	nic mass, <i>A</i> _r , of potassi	um. [3]
		Isotope	Relative isotopic mass	% in sample	
		³⁹ K	39	93.1	
		⁴⁰ K	40	0.0122	
		⁴¹ K	41	6.88	
		/mass ×	$\%$ isotope 1) \pm (mass \times % isot	$(mass \times 0)$ is	sotono 3)
		$A_r = \frac{(mass \times a)}{a}$	% isotope 1) + (mass × % isoto 100	ope 2) + (mass × % is	sotope 3)
		$A_{\rm r} = \frac{({\rm mass} \times {\rm mass})}{{\rm mass}}$		ope 2) + (mass × % is A _r =	
		$A_r = \frac{(mass \times n)^2}{2}$			
		$A_{\rm r} = \frac{({\rm mass} \times {\rm mass})}{{\rm mass}}$			

Examiner only (b) Lithium lies above potassium in the Periodic Table. Give two similarities and two differences between the reactions of potassium and (i) lithium with water. [2] Write a balanced symbol equation for the reaction between potassium and water. (ii) [3]

15

9

© WJEC CBAC Ltd.

(b)	Explain the change in rate over time.	[2]
(C)	State one way of improving the validity of the results obtained. Explain your answer.	[2]

State and explain the eactivities of the halo	observations made ogens? Include equa	e. How can the rest ations in your answ	ults be used to de wer.	termine the relative [6 QER]

. <i>(a)</i>	Glob in th	bal warming is believed to be mainly the result of increasing levels of carbon dioxide e atmosphere.
	(i)	State how the balance of carbon dioxide and oxygen is maintained in the atmosphere. Explain why levels of carbon dioxide are increasing and how this leads to global warming. [3]
	 (ii)	Carbon capture and storage (CCS) is one possible method of reducing global
	()	warming.
		Describe briefly how CCS is carried out. [2]
	•••••	
20		© WJEC CBAC Ltd. (3410UA0-1)

		21	
(b)	Oxide city c	es of nitrogen are released in vehicle exhaust fumes. They can cause smog in busy centres as well as acid rain.	Examine only
	(i)	One oxide of nitrogen contains 30.4 g of nitrogen and 69.6 g of oxygen.	
		Find the simplest formula of this oxide. You must show your working. [3]	
		$A_{\rm r}({\rm N}) = 14$ $A_{\rm r}({\rm O}) = 16$	
		Simplest formula	
	(ii)	The oxide with this simplest formula is found to have a relative molecular mass	
		of 92. Find its molecular formula. [2]	
		Molecular formula	
			10
		END OF PAPER	

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examine only

aluminium Al^{3+} bromide Br^- ammonium NH_4^+ carbonate CO_3^{2-} barium Ba^{2+} chloride Cl^- calcium Ca^{2+} fluoride F^- copper(II) Cu^{2+} hydroxide OH^- hydrogen H^+ iodide I^- iron(II) Fe^{2+} nitrate NO_3^- iron(III) Fe^{3+} oxide O^{2-} lithium Li^+ sulfate SO_4^{2-} magnesium Mg^{2+} Ni^{2+} $Ni^2 +$	POSITIV	E IONS	NEGATIVE IONS			
ammonium NH_4^+ carbonate $CO_3^{2^-}$ barium Ba^{2^+} chloride CI^- calcium Ca^{2^+} fluoride F^- copper(II) Cu^{2^+} hydroxide OH^- hydrogen H^+ iodide I^- iron(II) Fe^{2^+} nitrate NO_3^- iron(III) Fe^{3^+} oxide O^{2^-} lithium Li^+ sulfate $SO_4^{2^-}$ magnesium Mg^{2^+} Ni^{2^+} $Silver$ Ag^+ silver Ag^+ Na^+ $Silver$ $Silver$	Name	Formula	Name	Formula		
bariumBa2+chlorideCI-calciumCa2+fluorideF-copper(II)Cu2+hydroxideOH-hydrogenH+iodideI-iron(II)Fe2+nitrateNO3-iron(III)Fe3+oxideO2-lithiumLi+sulfateSO42-magnesiumMg2+Ni2+sulfatepotassiumK+silverAg+sodiumNa+Na+	aluminium	Al ³⁺	bromide	Br ⁻		
calciumCa ²⁺ fluorideF ⁻ copper(II)Cu ²⁺ hydroxideOH ⁻ hydrogenH ⁺ iodideI ⁻ iron(II)Fe ²⁺ nitrateNO ₃ ⁻ iron(III)Fe ³⁺ oxideO ²⁻ lithiumLi ⁺ sulfateSO ₄ ²⁻ magnesiumMg ²⁺ hi ²⁺ sulfateSO ₄ ²⁻ potassiumK ⁺ Ni ²⁺ Ni ²⁺ silverAg ⁺ Na ⁺ Solum	ammonium	NH_4^+	carbonate	CO ₃ ²⁻		
copper(II)Cu2+hydroxideOH-hydrogenH+iodideI^iron(II)Fe2+nitrateNO3^iron(III)Fe3+oxideO2-lithiumLi+sulfateSO42-magnesiumMg2+sulfateSO42-nickelNi2+K+silverAg+sodiumNa+Na+Solution	barium		chloride	CI		
hydrogen H^+ iodide I^- iron(II) Fe^{2+} nitrate NO_3^- iron(III) Fe^{3+} oxide O^{2-} lithium Li^+ sulfate SO_4^{2-} magnesium Mg^{2+} nickel Ni^{2+} potassium K^+ silver Ag^+ sodium Na^+	calcium		fluoride	F		
iron(II) Fe^{2+} nitrate NO_3^- iron(III) Fe^{3+} oxide O^{2-} lithium Li^+ sulfate SO_4^{2-} magnesium Mg^{2+} nickel Ni^{2+} potassium K^+ silver Ag^+ sodium Na^+ Na^+	copper(II)	Cu ²⁺	hydroxide	OH⁻		
iron(III) Fe ³⁺ oxide O ²⁻ lithium Li ⁺ sulfate SO ₄ ²⁻ magnesium Mg ²⁺ nickel Ni ²⁺ potassium K ⁺ silver Ag ⁺ sodium Na ⁺	hydrogen		iodide	I_		
lithium Li ⁺ sulfate SO ₄ ²⁻ magnesium Mg ²⁺ nickel Ni ²⁺ potassium K ⁺ silver Ag ⁺ sodium Na ⁺	iron(II)		nitrate	NO ₃ ⁻		
magnesium Mg ²⁺ nickel Ni ²⁺ potassium K ⁺ silver Ag ⁺ sodium Na ⁺	iron(III)	Fe ³⁺	oxide	O ²⁻		
nickel Ni ²⁺ potassium K ⁺ silver Ag ⁺ sodium Na ⁺	lithium		sulfate	SO4 ²⁻		
nickel Ni ²⁺ potassium K ⁺ silver Ag ⁺ sodium Na ⁺	magnesium	Mg ²⁺				
silver Ag ⁺ sodium Na ⁺	nickel	Ni ²⁺				
sodium Na ⁺	potassium	K ⁺				
sodium Na ⁺	silver	Ag ⁺				
zinc Zn ²⁺	sodium					
	zinc					

Turn over.

TABLE	
ODIC -	
PERI	d
ΗË	Grou

~

ဖ

S

4

က

iroup

1 Hydrogen 1

2

19 19	Fiuorine 9	^{35.5}	Chlorine 17	80 Br	Bromine 35	127 	lodine 53	210 At	Astatine 85		
16 0	Uxygen 8	32 S	Sulfur 16	79 Se	Selenium 34	128 Te	Tellurium 52	210 Po	Polonium 84		
4 ¹ N ¹¹		Ъ 3	Phosphorus 15	75 As	Arsenic 33	122 Sh	Antimony 51	209 Bi	Bismuth 83		
C C C	Carbon 6	28 Si	Silicon 14	73 Ge	Germanium 32	119 Sn	Tin 50	207 Ph	Lead 82		
Boron Boron	5	27 AI	Aluminium 13	70 Ga	Gallium 31	115 In	Indium 49	204 TI	Thallium 81		
				65 Zn	Zinc 30	112 Cd	Cadmium 48	201 Ha	Mercury 80		
				63.5 Cu	Copper 29	108 Ag	Silver 47	197 A LI	Gold 79		
				59 Ni	Nickel 28	106 Pd	Palladium 46	195 Pt	Platinum 78		
				59 Co	Cobalt 27	103 Rh	Rhodium 45		Iridium 77		
]				56 Fe	Iron 26	101 Ru	Ruthenium 44	$\overset{190}{\mathrm{OS}}$	Osmium 76		Key
				55 Mn	Manganese 25	⁹⁹ Tc	Technetium 43	186 Re	Rhenium 75		
				52 Cr	Chromium 24	⁹⁶ MO	Molybdenum 42	184 V	Tungsten 74		
				51	Vanadium 23	93 ND	Niobium 41	181 La La	Tantalum 73		
				48 Ti	Titanium 22	91 7r	Zirconium 40	179 Hf	Hafnium 72		
				45 Sc	Scandium 21	89	Yttrium 39	139 a	Lanthanum 57	227 AC	Actinium 89
9 Be	beryllum 4	²⁴ Mg	Magnesium 12	⁴⁰ Ca	Calcium 20	88 7	Strontium 38	137 Ba	Barium 56	²²⁶ Ra	Radium 88
∠ Lİ Hium	Litnium 3	23 Na	Sodium 11	£ 30	Potassium 19	86 86	Rubidium 37	133 CS	Caesium 55	223 Fr	Francium 87
© WJEC (CBACI	Ltd.		(341	0UA0-1)						

24

© WJEC CBAC Ltd.