Other Names

GCSE

3410U20-1

THURSDAY, 16 MAY 2019 - MORNING

CHEMISTRY – Unit 2:

Chemical Bonding, Application of Chemical Reactions and Organic Chemistry

FOUNDATION TIER

1 hour 45 minutes

For Exa	aminer's us	e only
Question	Maximum Mark	Mark Awarded
1.	4	
2.	9	
3.	8	
4.	13	
5.	7	
6.	11	
7.	8	
8.	9	
9.	7	
10.	4	
Total	80	

ADDITIONAL MATERIALS

In addition to this examination paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

Question 6(a) is a quality of extended response (QER) question where your writing skills will be assessed.

The Periodic Table is printed on the back cover of this paper and the formulae for some common ions on the inside of the back cover.

The b	box contains the names of four types of smart material.				
	thermochromic pigment shape memory polymer				
	hydrogel photochromic pigment				

Use the information given to complete the table.

Examiner only

[2]

5

sulfur	Step 1 Step 2 Sulfur dioxide Step 2 burned in air heated in air over vanadium(V) oxide catalyst sulfur trioxide dissolved in concentrated sulfuric acid and then diluted with	sulfuric acid
(i)	at 450 °C liquid A Name the element in the air which reacts with sulfur in step 1 .	[1]
(ii)	State the purpose of the catalyst in step 2 .	[1]
(iii)	Name liquid A used to dilute the concentrated sulfuric acid in step 3 .	[1]
(iv)	Complete and balance the symbol equation for the reaction in step 2 . $2SO_2 + O_2 \rightleftharpoons$	[2]

08

© WJEC CBAC Ltd.

© WJEC CBAC Ltd.

(ii) The diagram shows some water molecules and the weak forces between them.

Put a tick (\mathcal{J}) in the box next to the property of water which can be explained by the weak forces between water molecules. [1]

poor conductor of electricity	
colourless	
good conductor of heat	
low melting point and boiling point	

Examiner only (b) The diagram shows the apparatus used by a group of students to investigate the volume of hydrogen and oxygen gas formed during the electrolysis of water.

The overall equation for the electrolysis of water is as follows.

 $2H_2O \longrightarrow 2H_2 + O_2$

(i) The table shows the total volume of hydrogen formed over 10 minutes.

Time (minutes)	0	2	4	6	8	10
Volume of hydrogen (cm ³)	0	10	20	30	40	50

Examiner only Dafydd was asked to make some silver chloride. He formed a white precipitate of silver 5. (a) chloride by mixing solutions of sodium chloride and silver nitrate. sodium chloride solution white precipitate of silver nitrate solution silver chloride Complete the symbol equation for this reaction. (i) [1] (ii) Put a tick (\mathcal{I}) in the box next to the statement which describes why this method works. [1] silver is more dense than sodium silver chloride is soluble silver chloride is insoluble silver is below sodium in the reactivity series Give the name of the process that you would use to separate the precipitate of (iii) silver chloride from the reaction mixture. [1]

© WJEC CBAC Ltd.

16

(3410U20-1)

17

© WJEC CBAC Ltd.

(3410U20-1)

18

(b)

Microplastics in the Ocean

Plastics are used in many areas of modern life.

Figure 1 shows the amount of plastic production between 1950 and 2013.

One of plastic's greatest properties, its durability, is also one of the main reasons that plastics present a threat to the marine environment.

The term 'microplastic' is used to describe plastic particles that are less than 5 millimetres in diameter, which includes particles as small as 10 nanometres. Microplastics can be found in some cosmetic products, toothpastes and soaps.

Microplastics are spread throughout the oceans and are found on shorelines from the Arctic to Antarctica. **Figure 2** shows the number of microplastic pieces found in sea ice at four Arctic sites during a survey in 2014.

Microplastics have been found inside the bodies of marine animals. Microplastics often contain chemicals that can absorb poisons such as pesticides from the surrounding seawater. There is strong evidence of transfer of poisons from eaten microplastics into animal tissues. Nano-size microplastics have been shown to cross cell membranes, under laboratory conditions, causing tissue damage.

Public awareness of the potential for microplastics to damage marine animals is low compared with that of the impact of plastic litter in our seas and oceans. Effective education of society is essential to raise awareness of the damaging effects of microplastics.

	21
(i)	Put a tick (\mathcal{I}) in the box next to the size of microplastics. [1]
	less than 10 mm
	between 5mm and 10nm
	greater than 5 mm and less than 10 nm
	between 5mm and 10mm
(ii)	Put a tick (\checkmark) in the box next to the statement that best describes the amount of plastic produced in Europe since 2002. [1]
	plastic production has remained constant
	plastic production has increased
	plastic production has decreased
(iii)	Name the type of plastic most often found in the Arctic microplastic survey. [1]
(iv)	Put a tick (\checkmark) in the box next to a hypothesis which needs further testing by scientists. [1]
	the quantity of microplastics found in the Earth's oceans is increasing
	microplastics carry contaminants from sea water into animals
	microplastics cause tissue damage in marine animals
	microplastics are a greater problem near land than in deep water

Name	Molecular formula	Structural formula
methanol		Н Н—С—О—Н Н
ethanol	C₂H₅OH	
	С ₃ Н ₇ ОН	H H H H—C—C—C—O—H H H H

© WJEC CBAC Ltd.

(3410U20-1)

In Brazil sugar cane is used to make ethanol which can be used instead of petrol in cars. Many people see ethanol as the fuel of the future but others are concerned with environmental and social issues. The table shows information relating to the burning of 1 dm³ of ethanol and petrol.

	Ethanol	Petrol
Source	sugar cane	crude oil
Energy released (MJ)	23.5	33.0
CO ₂ released (kg)	1.5	2.2

Use the information in the table and your knowledge to answer the following question.

Explain **one** advantage and **one** disadvantage of using ethanol instead of petrol in cars. [2]

Advantage Disadvantage

(C)

Examiner only

25

) (i)	Use the graph to	find the	e maxim	ium terr	nperatu	re rise o	during t	he reac	tion.	[1]
				Ten	nperatu	re rise :	=			°C
(ii)	The energy give	n out ca	n be ca	lculated	lusing	the follo	owing fo	ormula.		
	energy given out	= total	volume	of read	tion mi	xture ×	< 4.2 ×	temp	erature	rise
	Calculate the energy given out during the reaction. [2]									
(iii)	The temperature final temperature Final temperatur Reason	e reading e	g you w	s in the ould ex	e cup w pect. G	as reco ive the	orded at reason	fter 2 h for you	ours. G r answe	
	e student repeated centration as the h									e same
Ti	me (s)	0	5	10	15	20	25	30	35	40
Te	emperature (°C)	21.5	21.5	21.5	24.0	26.0	26.9	27.0	27.0	27.0
) Us	t the results on the e the graphs to state anoic acid. Give the	e which e reason	of the tw for you	wo acid r choice	s is the				•	[2] or [1]

			Examiner
(d)	stude	temperature rises in both experiments were much lower than expected. The ent suggested that using a temperature sensor instead of a thermometer would give perature rises closer to the expected values.	only
	(i)	State why using a temperature sensor would still give a lower than expected temperature rise. [1]	
	(ii)	What improvement to the apparatus would you suggest to the student to obtain temperature rises closer to the expected values? [1]	
			9

(3410U20-1)

© WJEC CBAC Ltd.

The f	tables show the molecular formulae of some alkar		Exa
		1	
	Alkanes Alkenes		
	CH ₄ C ₂ H ₄		
	C ₂ H ₆ C ₃ H ₆		
	C ₃ H ₈		
	C ₄ H ₁₀		
(a)	The general formula for the alkene family is C alkane family.	C_nH_{2n} . Give the general formula for the [1]	
(b)	When alkanes and alkenes completely burn in a	air they form the same two products.	
	Give the chemical formulae for both products.	[1]	
	and		
(C)	Draw the structural formula for propene.	[1]	
(d)	Bromine water is used to distinguish alkenes from seen when bromine water is added to an alkene	om alkanes. Describe the colour change e. [1]	
	END OF PAPER		

on r	Additional page, if required. Write the question number(s) in the left-hand margin.	Exa
l		

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examine only

33

34

	/E IONS	NEGATI	VE IONS
Name	Formula	Name	Formula
aluminium	Al ³⁺	bromide	Br ⁻
ammonium	NH4 ⁺	carbonate	CO3 ²⁻
arium	Ba ²⁺	chloride	CI
alcium	Ca ²⁺	fluoride	F ⁻
copper(II)	Cu ²⁺	hydroxide	OH-
nydrogen	H⁺	iodide	1-
ron(II)	Fe ²⁺	nitrate	NO ₃ ⁻
iron(III)	Fe ³⁺	oxide	0 ^{2-°}
ithium	Li ⁺	sulfate	SO4 ²⁻
magnesium	Mg ²⁺		-
nickel	Ni ²⁺		
ootassium	K ⁺		
silver	Ag⁺		
sodium	Na ⁺		
inc	Zn ²⁺		

							Ħ	ЕРЕ	RIOI	THE PERIODIC TABLE	ABL	щ							
	~	0					Group	dne					ი	4	2	9	~	0	
							Hydrogen	Le										⁴ Helium	
	7 Lİ Lithium 3]					11 B 5	12 C Carbon 6	14 Nitrogen 7	16 O Sygen 8	19 F Fluorine 9	20 Neon 10	
	23 Na Sodium												27 Al 13	28 Silicon 14	31 Phosphorus 15	32 S Sulfur 16	35.5 CI Chlorine 17	40 Ar Argon	
	39 K Potassium 19		45 Sc Scandium 21	48 Ti Titanium 22	51 V Vanadium 23	52 Or Chromium 24	55 Mn Manganese 25	56 Fe Iron 26	59 Co Cobalt 27	59 Nickel 28	63.5 Cu Copper 29	65 Zn Zinc	70 Ga Gallium 31	73 Ge Germanium 32	75 AS Arsenic 33	79 Se 34	80 Br 35	84 Kr Krypton 36	
	86 Rb Rubidium 37	88 Sr Strontium 38	89 Y Yttrium 39	91 Zr Zirconium 40	93 Nb A1 41	96 MO Molybdenum 42	99 Tc Technetium 43	101 Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	112 Cd Cadmium 48	115 In Indium 49	119 Sn Tin	122 Sb Antimony 51	128 Te Tellurium 52	127 lodine 53	131 Xe 54	
	133 CS 55		139 La Lanthanum 57	179 Hf Hafnium 72	181 Ta Tantalum 73	184 W Tungsten 74	186 Re 75	190 Osmium 76	192 Ir 177	195 Pt Platinum 78	197 Au Gold 79	201 Hg Mercury 80	204 TI Thallium 81	207 Pb Lead 82	209 Bi 83	210 Po 84	Astatine	222 Rn Radon 86	
]	223 Fr 87		227 Actinium 89				_	Key											

relative atomic mass atomic number Ar Symbol Name

© WJEC CBAC Ltd.