Surname	•
---------	---

Other Names

Centre Number

wjec

GCSE

3410UB0-1

S19-3410UB0-1

THURSDAY, 16 MAY 2019 - MORNING

CHEMISTRY – Unit 2:

Chemical Bonding, Application of Chemical Reactions and Organic Chemistry

HIGHER TIER

1 hour 45 minutes

For Exa	aminer's us	e only
Question	Maximum Mark	Mark Awarded
1.	9	
2.	7	
3.	4	
4.	9	
5.	7	
6.	12	
7.	11	
8.	13	
9.	8	
Total	80	

ADDITIONAL MATERIALS

In addition to this examination paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

Question 7(c) is a quality of extended response (QER) question where your writing skills will be assessed.

The Periodic Table is printed on the back cover of this paper and the formulae for some common ions on the inside of the back cover.

Temperature rise =°C (ii) The energy given out can be calculated using the following formula. energy given out = total volume of reaction mixture × 4.2 × temperature rise Calculate the energy given out during the reaction. [2]
energy given out = total volume of reaction mixture \times 4.2 \times temperature rise
Calculate the energy given out during the reaction. [2]
Energy given out = J (iii) The temperature of the contents in the cup was recorded after 2 hours. Give the final temperature reading you would expect. Give the reason for your answer. [1] Final temperature°C Reason
) The student repeated the experiment using 25.0 cm ³ of ethanoic acid of the same concentration as the hydrochloric acid. The table shows the results obtained.
Time (s) 0 5 10 15 20 25 30 35 40
Temperature (°C) 21.5 21.5 24.0 26.0 26.9 27.0 27.0 27.0

			Examiner
(d)	stude	temperature rises in both experiments were much lower than expected. The ent suggested that using a temperature sensor instead of a thermometer would give perature rises closer to the expected values.	only
	(i)	State why using a temperature sensor would still give a lower than expected temperature rise. [1]	
	(ii)	What improvement to the apparatus would you suggest to the student to obtain temperature rises closer to the expected values? [1]	
	······		
			9

		Alkanes	Alkenes		
		CH ₄			
			C ₂ H ₄		
		C ₂ H ₆	C ₃ H ₆		
		C ₃ H ₈			
		C ₄ H ₁₀			
(a) (b)	alkane famil	у.			general formula for the [1] same two products.
- /		emical formulae fo		,	[1]
(c)	Draw the str	uctural formula fo	or propene.		[1]
(d)	Bromine wa seen when b	ter is used to dist promine water is a	inguish alkenes fro added to an alkene	om alkanes. Dese	cribe the colour change [1]

BLANK PAGE

7

PLEASE DO NOT WRITE ON THIS PAGE

© WJEC CBAC Ltd.

		10	
5.	(a)	Smart materials are used to make the frames and lenses of certain spectacles.	Examiner only
		Give the names of the different types of smart material used. Describe the unusual property of each. [2]	
		Frames	
		Lenses	
	10		
		© WJEC CBAC Ltd. (3410UB0-1)	ļ

Give the advantage of using nano-scale titanium dioxide particles rather than larger (i) titanium dioxide particles to make sun screens. [1]

11

Explain why some people are concerned about the use of nano-scale titanium (ii) dioxide particles in sun screens. [2]

Approximately how many times bigger are common titanium dioxide particles (iii) $(3 \times 10^{-7} \text{ m})$ than nano-scale titanium dioxide particles $(2.5 \times 10^{-10} \text{ m})$? [2]

Answer =

Examiner only

7

(b)

nano-particles is unsafe.

© WJEC CBAC Ltd.

Examiner Iron(III) oxide reacts with dilute hydrochloric acid forming iron(III) chloride and water. (b) (i) Balance the symbol equation for this reaction. [1] FeCl₃(aq) + Fe₂O₃(s) + H₂O(I) HCl(aq) -Sodium hydroxide solution can be used to detect the presence of aqueous iron(III) (ii) ions. The symbol equation below represents the reaction occurring between solutions of sodium hydroxide and iron(III) chloride. 3NaOH(aq) + FeCl₃(aq) - $3NaCl(aq) + Fe(OH)_3(s)$ • Write the ionic equation for the formation of the precipitate. [2]

only

Hardness is a measure of how resistant a material is to permanent shape change when a compressive force is applied.

	Percentage of carbon	Name of alloy
	0.0 - 0.6 %	low carbon steel
	0.6 - 0.8 %	medium carbon steel
	0.8 - 1.3 %	high carbon steel
	1.3 – 1.6 %	very high carbon steel
	re 2	Figu
productio [1	ent which best describes one way that	Tick (\mathcal{I}) the box next to the statem costs are reduced.
		high purity oxygen is used
	at	impurities are oxidised forming he
	speed	oxygen is blasted in at supersonic
		scrap steel is used in the process
increasin [1		the percentage of carbon in steel
		ductility increases, hardness increases, tensile strength increases, ductilit
		ductility decreases, tensile streng
	gth decreases	hardness increases, tensile streng
	sign an alloy with a high tensile stren e approximate value for the percentag	
	1.0	0.2 0.6
	easily pulled into a wire and withstand	Name the allow which is the most

Examiner only

© WJEC CBAC Ltd.

(C)	In the laboratory ammonium sulfate is prepared by reacting ammonium hydroxide solution with dilute sulfuric acid.
	Describe the titration method for making pure crystals of ammonium sulfate in the laboratory. Explain each stage of your method. [6 QER]

BLANK PAGE

18

PLEASE DO NOT WRITE ON THIS PAGE

8. Methanol, ethanol and butanol all belong to the homologous series of alcohols.

(a) The table shows information about two different methods for the manufacture of ethanol.

	Method A fermentation	Method B addition reaction	
Raw material	sugar from sugar cane	ethene from crude oil	
Reaction	yeast catalyst $C_6H_{12}O_6(aq) \rightarrow 2C_2H_5OH(aq) + 2CO_2(g)$	phosphoric(V) acid catalyst $C_2H_4(g) + H_2O(g) \rightarrow C_2H_5OH(I)$	
Operating pressure	1 atm	60 atm	
Type of process	batch (stop-start)	continuous (runs all the time)	
Us	se the information in the table and your knowled	dge to answer the following question.	
E>	plain two advantages and two disadvantages	of method A compared with method B . [4]	
Ac	Advantages		
1			
	<u>,</u>		
Di	sadvantages		
1			
	<u>.</u>		

Examiner only

only

Н

Н

Н

Some relevant bond energies are shown in the table.

H '

H-С-О-Н

Н

Bond	Bond energy (kJ)
С—Н	413
С—О	358
C=0	805
0—Н	464

The total energy needed to break all the bonds in the reactants is 5616 kJ. The energy needed to break the bonds in one molecule of methanol is 2061 kJ.
Use this information to calculate the amount of energy needed to break one O=0 bond. [2
Energy needed =k
Calculate the total energy released when all the bonds in the products are formed [2
Energy released =k
The burning of methanol gives out heat and is said to be exothermic. Use the tota energy value 5616 kJ and your answer to part (ii) to show that this is correct. [1

On the axes below draw the energy profile for the combustion of methanol and use (iv) [1]

Energy Reaction pathway

(i)

(ii)

(iii)

.....

Examiner only

© WJEC CBAC Ltd.

(3410UB0-1)

).	(a)		t a series of chemical ults are recorded in t		three unknown comp
			Α	В	С
		Add dilute HCI	no reaction	fizzes	no reaction
		Add BaCl ₂ (aq)	white precipitate forms	no reaction	no reaction
		Add NaOH(aq)	green precipitate forms	pungent smelling gas given off, turns damp red litmus paper blue	no reaction
		Add AgNO ₃ (aq)	no reaction	no reaction	cream precipitate forms
		Flame test	no colour	no colour	apple-green flame

Use the information provided to give the **chemical name** for each of the compounds. [3]

Compound A	
Compound B	
Compound C	

Examiner only A technician wants to prepare 250 cm³ of a 0.25 mol/dm³ solution of lead nitrate, Pb(NO₃)₂. Calculate the number of moles of lead nitrate required to make the solution. [2] Number of moles = mol Calculate the mass of solid lead nitrate that should be dissolved to make the [2] $A_{\rm r}({\rm Pb}) = 207$ $A_{\rm r}({\rm O}) = 16$ $A_{\rm r}({\rm N}) = 14$

END OF PAPER

(b)

(i)

(ii)

solution.

(iii) The only electronic balance available to the technician has a precision of ± 0.01 g.

Exactly how much lead nitrate should the technician weigh out to ensure that the concentration of the solution is as close as possible to 0.25 mol/dm³? [1]

Mass g

© WJEC CBAC Ltd.

8

Examiner only

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only

	'E IONS	NEGATI	VE IONS
Name	Formula	Name	Formula
aluminium	Al ³⁺	bromide	Br ⁻
ammonium	NH_4^+	carbonate	CO3 ²⁻
parium	Ba ²⁺	chloride	CI
calcium	Ca ²⁺	fluoride	F ⁻
copper(II)	Cu ²⁺	hydroxide	OH ⁻
nydrogen	H⁺	iodide	1-
ron(II)	Fe ²⁺	nitrate	NO ₃ ⁻
ron(III)	Fe ³⁺	oxide	0 ^{2–}
ithium	Li ⁺	sulfate	SO4 ²⁻
nagnesium	Mg ²⁺		-
nickel	Ni ²⁺		
ootassium	K ⁺		
silver	Ag ⁺		
sodium Na ⁺			
zinc	Zn ²⁺		

							Ŧ	EPE	RIOI	THE PERIODIC TABLE	'ABL	щ							
	~	0					Group	dno					ო	4	2	9	2	0	
							Hydrogen	- F										⁴ Helium	
	7 Li 1 3	9 Beryllium 4						1					11 Boron 5	12 Carbon 6	14 Nitrogen 7	16 Oxygen 8	19 Fluorine 9	20 Neon 10	
	23 Na Sodium 11	24 Mg 12 12											27 Aluminium 13	28 Silicon 14	31 Phosphorus 15	32 Sulfur 16	35.5 CI Chlorine		
	39 K Potassium 19	40 Ca Calcium 20	45 Sc Scandium 21	48 Ti Z2	n Vanadium C	52 Cr Chromium 24	55 Mn Manganese 25	56 Fe Iron	59 Co Cobalt 27	59 Nickel 28	63.5 Cu Copper 29	65 Zn 2inc	70 Gallium 31	73 Ge 32		79 Se 34	80 Br 35	84 Krypton 36	
,	86 Rb Rubidium 37	88 Strontium 38	$\overset{89}{_{139}}$	91 Zr Zirconiu 40	93 Nb Niobium 41	96 Mo Molybdenum 42	99 Tc 1echnetium	101 Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	112 Cd Cadmium 48		119 Sn 50	122 Sb Antimony 51	128 Te 52	127 lodine 53		
	133 Cs Caesium 55	137 Ba Barium 56	139 La Lanthanum 57	179 Hf Hafnium 72	181 Ta Tantalum 73	184 W Tungsten 74	186 Re Rhenium 75	190 Osmium 76	192 Ir Iridium 77	195 Pt 78	197 Au Gold 79	201 Hg Mercury 80	204 TI Thallium 81	207 Pb Lead 82	209 Bismuth 83	210 Polonium 84	210 At Astatine 85	222 Rn Radon 86	
]	223 Fr Francium 87		227 Actinium 89					Key											
							Ar Symbol Name Z		 relative atomic mass atomic number 	mass									

