Surname

First name(s)

Centre Number Candidate Number

0



### GCSE

3410U10-1

### FRIDAY, 16 JUNE 2023 – MORNING

### CHEMISTRY – Unit 1: Chemical Substances, Reactions and Essential Resources

### **FOUNDATION TIER**

1 hour 45 minutes

| For Exa  | aminer's us     | e only          |
|----------|-----------------|-----------------|
| Question | Maximum<br>Mark | Mark<br>Awarded |
| 1.       | 7               |                 |
| 2.       | 8               |                 |
| 3.       | 7               |                 |
| 4.       | 10              |                 |
| 5.       | 9               |                 |
| 6.       | 6               |                 |
| 7.       | 5               |                 |
| 8.       | 8               |                 |
| 9.       | 9               |                 |
| 10.      | 11              |                 |
| Total    | 80              |                 |

#### **ADDITIONAL MATERIALS**

In addition to this examination paper you will need a calculator and a ruler.

### INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page at the back of the booklet, taking care to number the question(s) correctly.

### **INFORMATION FOR CANDIDATES**

The number of marks is given in brackets at the end of each question or part-question.

The assessment of the quality of extended response (QER) will take place in Question 5(b).

The Periodic Table is printed on the back cover of this paper and the formulae for some common ions on the inside of the back cover.





© WJEC CBAC Ltd.

| remove sand from water                                                                                                                            | (i)  | Choose from the box the names of r                                     | nethods <b>B</b> and <b>I</b> | D.          | [2]     |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------|-------------------------------|-------------|---------|
| Method D         (ii) Give the letter, A, B, C or D, of the method used to       [3         remove sand from water                                |      | distillation chromatography                                            | filtration                    | evaporation | boiling |
| <ul> <li>(ii) Give the letter, A, B, C or D, of the method used to [3 remove sand from water</li> <li>obtain pure water from sea water</li> </ul> |      | Method B                                                               |                               |             |         |
| remove sand from water                                                                                                                            |      | Method D                                                               |                               |             |         |
| obtain pure water from sea water                                                                                                                  | (ii) | Give the letter, <b>A</b> , <b>B</b> , <b>C</b> or <b>D</b> , of the n | nethod used to                |             | [3]     |
|                                                                                                                                                   |      | remove sand from water                                                 |                               |             |         |
| separate red and vellow dves                                                                                                                      |      | obtain pure water from sea water                                       |                               |             |         |
|                                                                                                                                                   |      | separate red and yellow dyes                                           |                               |             |         |



3410U101 03





5











© WJEC CBAC Ltd.

(3410U10-1)



(ii) Wegener's theory of continental drift was not accepted by other scientists until several years after his death in 1930. The evidence to support his theory was found in 1960 when part of the ocean floor was surveyed around a plate boundary. The table shows data collected from the survey.

| Distance of ocean floor from plate boundary (km) | Approximate age of rock<br>(million years) |
|--------------------------------------------------|--------------------------------------------|
| 2000                                             | 100                                        |

Calculate the mean speed at which the ocean floor is spreading.

mean speed (km/million years) =  $\frac{\text{distance (km)}}{\text{time (million years)}}$ 

Mean speed = \_\_\_\_\_km/million years

(iii) The map shows some information about tectonic plates and three locations X, Y and Z.



Letter



9

3410U101 09

Examiner only

[1]

Examiner only (b) The photograph below shows 'pillow lava' which was formed from volcanoes on the sea bed at a **constructive** plate boundary millions of years ago. 'pillow lava' on Llanddwyn Island, Anglesey Tick  $(\mathcal{I})$  the box of the diagram that shows a constructive plate boundary where (i) the pillow lava was formed. [1] crust crust crust crust crust crust mantle mantle mantle mantle mantle mantle Complete the sentences by <u>underlining</u> the correct word(s) in the brackets. (ii) [2] Pillow lava is formed at a constructive plate boundary when (magma / sea water / crust) rises and cools, forming new rock. The movement of the Earth's tectonic plates is caused by ( electric currents / convection currents / ocean currents ) within the mantle.





© WJEC CBAC Ltd.





Examiner only (i) Plot the acid concentration against time on the grid below and draw a suitable line. One point has been plotted for you. [3] 80 70 60 50 Time 40 (S) 30 3410U101 13 20 10 0 20 40 60 100 80 Acid concentration (%) Underline the correct word(s) in the brackets to complete the following sentences. (ii) [2] As the acid concentration increases, the time to half-fill the test tube with gas (increases / stays the same / decreases ). As the acid concentration increases, the rate of the reaction (increases / stays the same / decreases ).



There are other ways the rate of the reaction can be changed. (iv)

14

Tick  $(\mathcal{J})$  the **two** statements that correctly describe other ways the rate of reaction can be increased. [2]

Increasing the temperature of the acid

Using a lump of magnesium

(iii)

collision.

Using a different apparatus

Using magnesium powder

Decreasing the temperature of the acid

|    | <br> | <br> |
|----|------|------|
| L  |      |      |
| L  |      |      |
| L  |      |      |
| L  |      |      |
| I. |      |      |
|    | 1 /  |      |
|    | 14   |      |

Examiner only

[2]

15





|     |                   | 17                  |               |                   |                         |      |
|-----|-------------------|---------------------|---------------|-------------------|-------------------------|------|
| (b) |                   |                     |               |                   |                         | Exam |
| Des | ribe the economic | benefits and enviro | onmental draw | backs of limeston | e quarrying.<br>[6 QER] |      |
|     |                   |                     |               |                   |                         |      |
|     |                   |                     |               |                   |                         |      |
|     |                   |                     |               |                   |                         |      |



18 Examiner only Rhian investigated the decomposition of three different metal carbonates. 6. (a) She measured the time taken for limewater to turn milky using the following apparatus. metal carbonate ŧ HEAT limewater Her results are shown in the table. Metal carbonate Time taken for limewater to turn milky (s) copper(II) carbonate 18 27 zinc carbonate lead carbonate 11 [1] Place the carbonates in order of stability. (i) Most stable ..... Least stable



Examiner only (ii) If sodium carbonate was used in the investigation the limewater would not turn milky however long it was heated. Tick  $(\mathcal{J})$  the reason why the limewater would not turn milky. [1] Sodium carbonate only decomposes a small amount on heating Sodium carbonate is very unstable Sodium carbonate does not decompose on heating Sodium carbonate decomposes too quickly On heating copper(II) carbonate, Rhian expected to make 5.0g of copper(II) oxide. (iii) She actually made 3.5 g. Use the formula below to calculate the percentage yield of copper(II) oxide in her experiment. [2] percentage yield =  $\frac{\text{actual mass}}{\text{expected mass}} \times 100$ Percentage yield = \_\_\_\_\_% (iv) One of the ions present in copper(II) carbonate is  $CO_3^{2^-}$ . [1] Give the formula of the other ion present. (b) Rhian carried out a flame test to show that sodium carbonate contains sodium ions. Give the colour of the flame seen. [1] 6



#### 7. Is it right to waste helium on party balloons?



Helium is a colourless inert gas found in Group 0 of the Periodic Table.

Helium is one of the commonest elements in the Universe, second only to hydrogen. However, on Earth it is relatively rare, as shown in **Table 1**.

Gases which have a density less than air can escape the Earth's gravity and leak away into space. The density of air is  $1.2 \text{ g/m}^3$ . **Bar chart 1** shows the densities of Group 0 gases.

Helium has the lowest boiling point of any element. This makes it of key importance for magnets used in hospital MRI scanners, which must be super-cooled to generate the hugely powerful magnetic fields required.

Some scientists believe that because helium is a finite resource it should not be used for party balloons.

#### Table 1

| Inert gas | Percentage in the atmosphere (%) | Melting point<br>(°C) | Boiling point<br>(°C) |
|-----------|----------------------------------|-----------------------|-----------------------|
| helium    | 0.00052                          | -272                  | -269                  |
| neon      | 0.0018                           | -246                  | -246                  |
| argon     | 0.93                             | -186                  | -186                  |
| krypton   | 0.0001                           | -152                  | -152                  |
| xenon     | 0.00009                          | -111                  | -106                  |





|     |       | 21                                                                                                                     |                             |                  |
|-----|-------|------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------|
| (a) | Ansv  | ver the following questions using the information given.                                                               |                             | Examiner<br>only |
|     | (i)   | Tick (✓) the box next to the <b>most</b> important property that make material to fill <b>floating</b> party balloons. | s helium a suitable<br>[1]  |                  |
|     |       | Helium is a gas                                                                                                        |                             |                  |
|     |       | Helium is the second most common element in the Universe                                                               |                             |                  |
|     |       | Helium is less dense than air                                                                                          |                             |                  |
|     |       | Helium is colourless                                                                                                   |                             |                  |
|     | (ii)  | Tick ( $\checkmark$ ) the box next to the correct statement.                                                           | [1]                         |                  |
|     |       | The Earth's atmosphere contains more helium than argon                                                                 |                             |                  |
|     |       | The Earth's atmosphere contains more xenon than helium                                                                 |                             |                  |
|     |       | The Earth's atmosphere contains more helium than krypton                                                               |                             |                  |
|     | (iii) | Tick ( $\checkmark$ ) the box next to the <b>best</b> reason for not using helium to                                   | fill party balloons.<br>[1] |                  |
|     |       | There isn't much helium in the Earth's atmosphere                                                                      |                             |                  |
|     |       | Scientists say helium shouldn't be used to fill balloons                                                               |                             |                  |
|     |       | Helium is a finite resource                                                                                            |                             |                  |
|     | (iv)  | Tick ( $\checkmark$ ) the box next to the correct statement.                                                           | [1]                         |                  |
|     |       | Only helium gas can leak away into space                                                                               |                             |                  |
|     |       | Helium and neon gases can leak away into space                                                                         |                             |                  |
|     |       | Only argon can leak away into space                                                                                    |                             |                  |
|     |       | All inert gases can leak away into space                                                                               |                             |                  |
|     |       |                                                                                                                        |                             |                  |



Turn over.

22 Examiner only The table below shows the electronic structure of three Group 0 elements. (b) Group 0 element Electronic structure 2 helium 2,8 neon 2,8,8 argon Tick  $(\mathcal{I})$  the box next to the statement that **best** explains why Group 0 elements are unreactive. [1] All Group 0 elements have 2 electrons in their inner shell All Group 0 elements have 8 electrons in their outer shell All Group 0 elements have full outer shells All Group 0 elements have some full shells 5









© WJEC CBAC Ltd.

|       |                                                                                                                                                                                            | Examiner |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| (ii)  | The solubility of lead nitrate at 20 $^\circ C$ is 53 g per 100 g of water.                                                                                                                | only     |
|       | Use the graph to find its solubility at 50 °C and hence calculate the mass of lead nitrate crystals that form when a saturated solution containing 100g of water cool from 50 °C to 20 °C. | s<br>2]  |
|       | Mass =                                                                                                                                                                                     | g        |
| (iii) | Use the graph to find the solubility of lead nitrate at 5 °C.                                                                                                                              | 1]       |
| ( )   | g per 100g of water                                                                                                                                                                        |          |
|       |                                                                                                                                                                                            |          |
|       |                                                                                                                                                                                            | 8        |
|       |                                                                                                                                                                                            |          |
|       |                                                                                                                                                                                            |          |
|       |                                                                                                                                                                                            |          |
|       |                                                                                                                                                                                            |          |
|       |                                                                                                                                                                                            |          |
|       |                                                                                                                                                                                            |          |
|       |                                                                                                                                                                                            |          |
|       |                                                                                                                                                                                            |          |
|       |                                                                                                                                                                                            |          |
|       |                                                                                                                                                                                            |          |
|       |                                                                                                                                                                                            |          |
|       |                                                                                                                                                                                            |          |
|       |                                                                                                                                                                                            |          |
|       |                                                                                                                                                                                            |          |
|       |                                                                                                                                                                                            |          |
|       |                                                                                                                                                                                            |          |
|       |                                                                                                                                                                                            |          |



| . (a) |   |             |         |          |        |         |        |        |        |       |        |       |       |   |    |
|-------|---|-------------|---------|----------|--------|---------|--------|--------|--------|-------|--------|-------|-------|---|----|
|       | ) | The followi | ng dia  | igram    | show   | vs an   | outlin | e of p | art of | the P | eriodi | c Tab | le.   |   |    |
|       |   | The letters | sho     | wn ar    | e NO   | T the   | cher   | nical  | symb   | ols o | f the  | elem  | ents. |   |    |
|       |   |             |         |          |        |         | ]      |        |        |       |        |       |       |   |    |
|       |   | ]           |         |          |        |         |        |        |        |       | Α      |       |       |   | В  |
| СС    | D |             |         |          |        |         |        |        |        |       | E      |       |       | F |    |
|       |   |             |         |          |        |         |        |        |        |       |        |       |       |   |    |
|       |   |             |         | <u> </u> |        | ]       |        |        | 1      |       |        |       |       |   |    |
|       |   | Choose let  | ters f  | rom t    | he dia | agram   | to co  | mplet  | te the | table | belov  | Ι.    |       | _ | [4 |
|       |   |             |         |          |        |         |        |        |        |       |        | Lette | r     |   |    |
|       |   | The eleme   | ent in  | Group    | o 3 ar | nd Per  | riod 2 |        |        |       |        |       |       |   |    |
|       |   | The eleme   | ent wh  | nich h   | as 10  | proto   | ons in | its nu | cleus  |       |        |       |       |   |    |
|       |   | The eleme   | ent wit | th the   | elect  | ronic   | struct | ure 2, | ,8,6   |       |        |       |       |   |    |
|       |   | The eleme   | ent wh  | nich fo  | orms a | a 2+ io | on     |        |        |       |        |       |       |   |    |
|       |   |             |         |          |        |         |        |        |        |       |        |       |       | J |    |



Examiner only The diagram below shows the electronic structure of an element in the Periodic Table. (b) In the space below, draw a diagram to show the electronic structure of the element which lies directly above it. [1] The table shows information about atoms **X**, **Y** and **Z**. (C) Number of Number of Number of Atom Symbol protons neutrons electrons 31 **X** Х 16 15 39 **Y** Υ 19 19 19 40 Ζ Ζ 19 21 19 Complete the table. [3] (i) Underline the term used to describe atoms Y and Z. [1] (ii) ions inert insoluble isotopes

27



Turn over.

| Eleme              | nt            | Relative<br>atomic mass      | Number of<br>electrons in<br>the outer shell | Melting point<br>(°C) | Boiling point<br>(°C) | Density<br>(g/cm <sup>3</sup> ) |
|--------------------|---------------|------------------------------|----------------------------------------------|-----------------------|-----------------------|---------------------------------|
| lithiur            | n             | 7                            | 1                                            | 180                   | 1342                  | 0.53                            |
| sodiu              | n             | 23                           | 1                                            | 98                    | 883                   | 0.97                            |
| potassi            | um            | 39                           | 1                                            | 63                    | 759                   | 0.89                            |
| rubidiu            | ım            | 85                           | 1                                            | 39                    | 688                   | 1.53                            |
| caesiu             | m             | 134                          | 1                                            | 29                    | 671                   | 1.93                            |
| Use<br>(i)<br>(ii) | State<br>prop | e the informatio<br>perties. | e table to answer                            | s why the eleme       | nts have similar      |                                 |
| (i)<br>            | State<br>prop | e the informatio<br>perties. | n which explains                             | s why the eleme       | nts have similar      |                                 |
| (i)<br>            | State<br>prop | e the informatio<br>perties. | n which explains                             | s why the eleme       | nts have similar      |                                 |
| (i)<br>            | State<br>prop | e the informatio<br>perties. | n which explains                             | s why the eleme       | nts have similar      |                                 |
| (i)<br>            | State<br>prop | e the informatio<br>perties. | n which explains                             | s why the eleme       | nts have similar      |                                 |
| (i)<br>            | State<br>prop | e the informatio<br>perties. | n which explains                             | s why the eleme       | nts have similar      |                                 |



xaminer only



)

Examiner only Sodium fluoride is added to some UK public water supplies to reduce tooth decay in (C) children. In America sodium hexafluorosilicate,  $Na_2SiF_6$ , is more commonly used. The relative formula mass of sodium hexafluorosilicate is 188. Calculate the percentage of fluorine in sodium hexafluorosilicate. [2] (i)  $A_{\rm r}({\rm F}) = 19$   $M_{\rm r}({\rm Na}_2{\rm SiF}_6) = 188$ Percentage = % State an ethical reason why some people oppose the fluoridation of water (ii) supplies. [1] Apart from water supplies, state the most commonly used source of fluoride to (iii) reduce tooth decay. [1] 11 **END OF PAPER** 



| Question number | Additional page, if required.<br>Write the question number(s) in the left-hand margin. | Examine<br>only |
|-----------------|----------------------------------------------------------------------------------------|-----------------|
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |



32



33



34



| aluminium $Al^{3+}$ bromide $Br^-$ ammonium $NH_4^{+}$ carbonate $CO_3^{2-}$ barium $Ba^{2+}$ chloride $CI^-$ calcium $Ca^{2+}$ fluoride $F^-$ copper(II) $Cu^{2+}$ hydroxide $OH^-$ hydrogen $H^+$ iodide $I^-$ iron(II) $Fe^{2+}$ nitrate $NO_3^-$ iron(III) $Fe^{3+}$ oxide $O^{2-}$ lithium $Li^+$ sulfate $SO_4^{2-}$ magnesium $Mg^{2+}$ $Ni^{2+}$ $K^+$         | POSITIV    | E IONS           | NEGATI    | VE IONS                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------|-----------|-------------------------------|
| ammonium $NH_4^+$ carbonate $CO_3^{2^-}$ barium $Ba^{2^+}$ chloride $CI^-$ calcium $Ca^{2^+}$ fluoride $F^-$ copper(II) $Cu^{2^+}$ hydroxide $OH^-$ hydrogen $H^+$ iodide $I^-$ iron(II) $Fe^{2^+}$ nitrate $NO_3^-$ iron(III) $Fe^{3^+}$ oxide $O^{2^-}$ lithium $Li^+$ sulfate $SO_4^{2^-}$ magnesium $Mg^{2^+}$ $Ni^{2^+}$ $Ni^{2^+}$ potassium $K^+$ $Ag^+$ $Na^+$ | Name       | Formula          | Name      | Formula                       |
| ammonium $NH_4^+$ carbonate $CO_3^{2^-}$ barium $Ba^{2^+}$ chloride $CI^-$ calcium $Ca^{2^+}$ fluoride $F^-$ copper(II) $Cu^{2^+}$ hydroxide $OH^-$ hydrogen $H^+$ iodide $I^-$ iron(II) $Fe^{2^+}$ nitrate $NO_3^-$ iron(III) $Fe^{3^+}$ oxide $O^{2^-}$ lithium $Li^+$ sulfate $SO_4^{2^-}$ magnesium $Mg^{2^+}$ $Ni^{2^+}$ $Ni^{2^+}$ potassium $K^+$ $Ag^+$ $Na^+$ | aluminium  | Al <sup>3+</sup> | bromide   | Br <sup>-</sup>               |
| bariumBa2+chlorideCITcalciumCa2+fluorideFTcopper(II)Cu2+hydroxideOHThydrogenH*iodideITiron(II)Fe2+nitrateNO3Tiron(III)Fe3+oxideO2TlithiumLi*sulfateSO42TmagnesiumMg2+Ni2+sulfateSO42TpotassiumK*Ni2+Ni2+SilverAg*sodiumNa*Na*SilverSilverSilver                                                                                                                        | ammonium   |                  | carbonate | CO <sub>3</sub> <sup>2-</sup> |
| calciumCa2+fluorideF <sup>-</sup> copper(II)Cu2+hydroxideOH <sup>-</sup> hydrogenH*iodideI <sup>-</sup> iron(II)Fe2+nitrateNO3 <sup>-</sup> iron(III)Fe3+oxideO2-lithiumLi*sulfateSO4 <sup>2-</sup> magnesiumMg2+Ni <sup>2+</sup> sulfateSO4 <sup>2-</sup> nickelNi <sup>2+</sup> Ni <sup>2+</sup> Ni <sup>2+</sup> silverAg*Na*Na*                                    | barium     | Ba <sup>2+</sup> | chloride  |                               |
| copper(II)Cu2+hydroxideOH-hydrogenH+iodideI^iron(II)Fe2+nitrateNO3^-iron(III)Fe3+oxideO2-lithiumLi+sulfateSO42-magnesiumMg2+sulfateSO42-nickelNi2+K+silverAg+sodiumNa+K+K                                                                                                                                                                                              | calcium    |                  | fluoride  |                               |
| hydrogen $H^+$ iodide $I^-$ iron(II) $Fe^{2+}$ nitrate $NO_3^-$ iron(III) $Fe^{3+}$ oxide $O^{2-}$ lithium $Li^+$ sulfate $SO_4^{2-}$ magnesium $Mg^{2+}$ hickel $Ni^{2+}$ potassium $K^+$ silver $Ag^+$ sodium $Na^+$                                                                                                                                                 | copper(II) |                  | hydroxide | OH⁻                           |
| iron(II) Fe <sup>2+</sup> nitrate NO <sub>3</sub> <sup>-</sup><br>iron(III) Fe <sup>3+</sup> oxide O <sup>2-</sup><br>lithium Li <sup>+</sup> sulfate SO <sub>4</sub> <sup>2-</sup><br>magnesium Mg <sup>2+</sup><br>nickel Ni <sup>2+</sup><br>potassium K <sup>+</sup><br>silver Ag <sup>+</sup><br>sodium Na <sup>+</sup>                                           |            |                  |           |                               |
| iron(III) Fe <sup>3+</sup> oxide O <sup>2-</sup><br>lithium Li <sup>+</sup> sulfate SO <sub>4</sub> <sup>2-</sup><br>magnesium Mg <sup>2+</sup><br>nickel Ni <sup>2+</sup><br>potassium K <sup>+</sup><br>silver Ag <sup>+</sup><br>sodium Na <sup>+</sup>                                                                                                             |            |                  | nitrate   |                               |
| lithium Li <sup>+</sup> sulfate SO <sub>4</sub> <sup>2-</sup><br>magnesium Mg <sup>2+</sup><br>nickel Ni <sup>2+</sup><br>potassium K <sup>+</sup><br>silver Ag <sup>+</sup><br>sodium Na <sup>+</sup>                                                                                                                                                                 |            |                  | oxide     | 0 <sup>2-</sup>               |
| magnesium Mg <sup>2+</sup><br>nickel Ni <sup>2+</sup><br>potassium K <sup>+</sup><br>silver Ag <sup>+</sup><br>sodium Na <sup>+</sup>                                                                                                                                                                                                                                  |            |                  | sulfate   |                               |
| nickel Ni <sup>2+</sup><br>potassium K <sup>+</sup><br>silver Ag <sup>+</sup><br>sodium Na <sup>+</sup>                                                                                                                                                                                                                                                                |            |                  |           | +                             |
| potassium K <sup>+</sup><br>silver Ag <sup>+</sup><br>sodium Na <sup>+</sup>                                                                                                                                                                                                                                                                                           | nickel     | Ni <sup>2+</sup> |           |                               |
| silver Ag <sup>+</sup><br>sodium Na <sup>+</sup>                                                                                                                                                                                                                                                                                                                       | potassium  |                  |           |                               |
| sodium Na <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                 | silver     |                  |           |                               |
|                                                                                                                                                                                                                                                                                                                                                                        |            |                  |           |                               |
|                                                                                                                                                                                                                                                                                                                                                                        |            |                  |           |                               |
|                                                                                                                                                                                                                                                                                                                                                                        |            |                  |           |                               |



Turn over.

|                             |                              |                     |                              | 50                          |                                  |                              | _                     |
|-----------------------------|------------------------------|---------------------|------------------------------|-----------------------------|----------------------------------|------------------------------|-----------------------|
| 0                           | <sup>4</sup> He <sup>1</sup> | 20<br>Neon<br>10    | 40<br>Ar<br>Argon<br>18      | 84<br>Kr<br>Krypton<br>36   | 131<br>Xe<br>Xenon<br>54         | 222<br>Rn<br>Radon<br>86     |                       |
| ~                           |                              | 19<br>Fluorine<br>9 | 35.5<br>CI<br>Chlorine<br>17 | 80<br>Br<br>35              | 127<br> <br>lodine<br>53         | 210<br>At<br>Astatine<br>85  |                       |
| 9                           |                              | 16<br>O<br>8<br>8   | 32<br>Sulfur<br>16           | 79<br>Selenium<br>34        | 128<br>Te<br>Tellurium<br>52     | 210<br>Polonium<br>84        |                       |
| Ŋ                           |                              | 14<br>Nitrogen<br>7 | 31<br>Phosphorus<br>15       |                             |                                  |                              |                       |
| 4                           |                              | 12<br>Carbon<br>6   | 28<br>Silicon<br>14          | 73<br>Germanium<br>32       | 119<br>50 Tin                    | 207<br>Pb<br>Lead<br>82      |                       |
| ი                           |                              | 11<br>Boron<br>5    | 27<br>Al<br>Aluminium<br>13  | 70<br>Ga<br>31              | 115<br><b>In</b><br>Indium<br>49 | 204<br>TI<br>Thallium<br>81  |                       |
| щ                           |                              |                     |                              | 65<br>Zn<br>Zinc            | 112<br>Cd<br>Cadmium<br>48       | 201<br>Hg<br>Mercury<br>80   |                       |
| <b>ABL</b>                  |                              |                     |                              | 63.5<br>Cu<br>Copper<br>29  | 108<br>Ag<br>Silver<br>47        | 197<br>Au<br>Gold<br>79      | -                     |
| THE PERIODIC TABLE<br>Group |                              |                     |                              | 59<br>Nickel<br>28          | 106<br>Pd<br>Palladium<br>46     | 195<br>Pt<br>Platinum<br>78  | -                     |
|                             |                              |                     |                              | 59<br>Co<br>Cobalt<br>27    | 103<br>Rh<br>Rhodium<br>45       | 192<br>Ir<br>Iridium<br>77   | -                     |
|                             | E.                           | 7                   |                              | 56<br>Fe<br>Iron<br>26      | 101<br>Ruthenium<br>44           | 190<br>Osmium<br>76          | Key                   |
|                             | Hydrogen                     |                     |                              | 55<br>Mn<br>Manganese<br>25 | 99<br>TC<br>Technetium           | 186<br>Re<br>Rhenium<br>75   |                       |
|                             |                              |                     |                              | 52<br>Chromium<br>24        | 96<br>Mo<br>Molybdenum<br>42     | 184<br>W<br>Tungsten<br>74   |                       |
|                             |                              |                     |                              | 51<br>Vanadium<br>23        | 93<br>Niobium<br>41              | 181<br>Ta<br>Tantalum<br>73  |                       |
|                             |                              |                     |                              | 48<br>Ti<br>Z2              | 91<br>Zr<br>Zirconium<br>40      | 179<br>Hf<br>Hafnium<br>72   | -                     |
|                             |                              |                     |                              | 45<br>Sc<br>Scandium<br>21  | 89<br>Yttrium<br>39              | 139<br>La<br>Lanthanum<br>57 | 227<br>Actinium<br>89 |
| 2                           |                              | 9<br>Beryllium<br>4 | 24<br>Mg<br>Magnesium<br>12  | 40<br>Ca<br>Calcium<br>20   |                                  |                              |                       |
| ~                           |                              | 7<br>Li<br>Santa    |                              | 39<br>K<br>Potassium<br>19  |                                  | 133<br>Cs<br>Caesium<br>55   | 223<br>Fr<br>87       |
| 36                          |                              | © WJEC CBAC         |                              | (3410U10-1)                 | 1                                | 1                            | <u> </u>              |

 relative atomic mass atomic number A<sub>r</sub> Symbol Name Z ١