Surname

First name(s)

Centre Number Candidate Number

0

GCSE

3410U20-1

MONDAY, 22 MAY 2023 - MORNING

CHEMISTRY – Unit 2: Chemical Bonding, Application of Chemical Reactions and Organic Chemistry FOUNDATION TIER

1 hour 45 minutes

For Exa	For Examiner's use only					
Question	Maximum Mark	Mark Awarded				
1.	9					
2.	8					
3.	9					
4.	12					
5.	12					
6.	10					
7.	9					
8.	11					
Total	80					

ADDITIONAL MATERIALS

In addition to this examination paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

Question **4**(b) is a quality of extended response (QER) question where your writing skills will be assessed.

The Periodic Table is printed on the back cover of this paper and the formulae for some common ions on the inside of the back cover.

			Answer all	questions.		
(a)	A stu The	ident investig colour produc	ated the pH of severa ced with each substa	al substances usi nce is shown.	ng universal indicat	or solution.
			Substance	Colour		
			hand wash	blue		
			battery fluid	red		
			water	green		
			lemon juice	orange		
			drain cleaner	purple		
	(iii)		er contains sodium h			
		Circle the co	prrect formula of sod	um hydroxide.		[1]
		NaO	NAOH	NaOH	NaOh	

niner ly

© WJEC CBAC Ltd.

Reaction	Reactant added to acid	Observations	
Α	magnesium	fizzing temperature increase of 25 °C magnesium disappears	
В	sodium hydroxide	no fizzing temperature increase of 8°C	
С	sodium carbonate	fizzing temperature increase of 5°C	
		no fizzing	
a	gas. Which observation sho	temperature increase of 11 °C mixture turns blue Give the letter of the other reaction that prod ws that a gas was produced?	duced [2]
(i) Re a g	eaction A produced a gas. G	temperature increase of 11 °C mixture turns blue Give the letter of the other reaction that proc	
(i) Re a g Le Ot	eaction A produced a gas. G gas. Which observation sho	temperature increase of 11 °C mixture turns blue Give the letter of the other reaction that prod ws that a gas was produced?	
(i) Re a (Le Of (ii) Or De	eaction A produced a gas. G gas. Which observation sho tter pservation	temperature increase of 11 °C mixture turns blue Give the letter of the other reaction that prod ws that a gas was produced?	[2]
(i) Re a (Le Ot (ii) Or De ex	eaction A produced a gas. G gas. Which observation sho tter pservation the of the gases produced is escribe how you could test for pect for a positive test.	temperature increase of 11 °C mixture turns blue Give the letter of the other reaction that prod ws that a gas was produced?	[2]
(i) Re a (Le Ot (ii) Or De ex Te	eaction A produced a gas. G gas. Which observation sho tter pservation the of the gases produced is escribe how you could test for pect for a positive test.	temperature increase of 11 °C mixture turns blue Give the letter of the other reaction that prod ws that a gas was produced? hydrogen. or hydrogen gas. Give the observation you	[2] would [2]
(i) Re a (Le Ot (ii) Or ex Te Ot (iii) Gi	eaction A produced a gas. G gas. Which observation sho tter pservation the of the gases produced is escribe how you could test for pect for a positive test. st	temperature increase of 11 °C mixture turns blue Give the letter of the other reaction that prod ws that a gas was produced? hydrogen. or hydrogen gas. Give the observation you	[2] would [2]

Turn over.

3410U201 03

(c) A class used the apparatus shown to compare the combustion of different alcohols. They burned each alcohol for 1 minute. They measured the temperature of the water before and after burning each alcohol.

5

The table shows the increase in temperature of the water for each alcohol.

Alcohol	Temperature increase (°C)
methanol	8
ethanol	19
propanol	23
butanol	38

(i) The starting temperature of the water each time was 18 °C. Calculate the final temperature of the water after burning ethanol. [1]

Final temperature =°C

Examiner only

(b) In a different experiment, using the apparatus shown below, the volume of carbon dioxide produced at 35 °C was measured and recorded every 10 minutes for 60 minutes.

Time (minutes)	Volume of carbon dioxide produced (cm ³)
0	0
10	6
20	12
30	17
40	25
50	30
60	36

		Examiner
(ii)	Use the graph to find the volume of carbon dioxide produced after 25 minutes. [1]	only
	Volume cm ³	
(iii)	Use the data to estimate how long it would take to produce 100 cm ³ of carbon dioxide gas. Assume that the rate of the reaction does not change. [1]	
	Time = minutes	
		9
10		
10	© WJEC CBAC Ltd. (3410U20-1)	

BLANK PAGE

11

PLEASE DO NOT WRITE ON THIS PAGE

(ii) Aluminium oxide contains the ions Al³⁺ and O^{2−}.
Give the formula of aluminium oxide. [1]
(iii) Iron oxide is reduced by heating with carbon in a blast furnace.
Tick (✓) the box that states why aluminium oxide cannot be reduced in this way. [1]
carbon is more reactive than aluminium
iron is more reactive than aluminium
aluminium is more reactive than carbon

3410U201 13

Examiner only

14
The pictures show copper metal used in electrical wiring, saucepans and water pipes. Image: the picture show copper metal used in electrical wiring, saucepans and water pipes. Image: the picture show copper metal used in electrical wiring, saucepans and water pipes. Image: the picture show copper metal used in electrical wiring, saucepans and water pipes. Image: the picture show copper metal used in electrical wiring, saucepans and water pipes. Image: the picture show copper metal used in electrical wiring, saucepans and water pipes. Image: the picture show copper metal used in electrical wiring, saucepans and water pipes. Image: the picture show copper metal used in electrical wiring, saucepans and water pipes. Image: the picture show copper metal used in electrical wiring, saucepans and water pipes. Image: the picture show copper metal used in electrical wiring, saucepans and water pipes. Image: the picture show copper metal used in electrical wiring, saucepans and water pipes. Image: the picture show copper metal used in electrical wiring, saucepans and water pipes. Image: the picture show copper metal used in electrical wiring. Image: the picture show copper metal used in electrical wiring. Image: the picture show copper metal used in electrical wiring. Image: the picture show copper metal used in electrical wiring. Image: the picture show copper metal used in electrical wiring. Image: the picture show copper
Describe how the properties of copper make it suitable for each of these uses. [6 QER]
•

BLANK PAGE

15

PLEASE DO NOT WRITE ON THIS PAGE

5. Plant and crop growth can be improved using fertilisers containing nitrogen. Fertilisers are substances that are added to the soil in order to increase the supply of nutrients that boost the growth of plants. With the rapid increase in global population, the demand for food has been rising tremendously. It is estimated that 40-60% of agricultural crops are now grown with the use of different types of fertilisers. Many fertilisers are produced using ammonia.

When you use too much fertiliser in the soil, it can lead to eutrophication. Fertilisers contain substances like nitrates and phosphates that are washed into lakes, oceans and rivers by rain water. These substances lead to excessive growth of algae and plants in the waterways resulting in a decrease in the levels of oxygen. The decrease in oxygen levels leads to the death of fish and other aquatic animals and contributes to changes in food chains.

Figure 1 shows the relative populations of world continents in 2016.

Figure 2 shows the relative world consumption of ammonia in 2016.

(a) (i) Tick (✓) **three** boxes that state the effects of fertiliser use which contribute to the death of aquatic animals in eutrophication. [2]

17

crop growth on fields increases	
fertilisers run into waterways	
plant growth in rivers and lakes increases	
aquatic animals do not have enough oxygen	
farmers' profits increase	

State whether the information in Figure 1 and Figure 2 shows a link between the number of people living on each continent and the amount of ammonia used. Give reasons for your answer.

Examiner only

Examiner only The label on a bag of fertiliser shows the formula of the nitrogen compound that the (b) fertiliser contains. 1.5 kg fertiliser $(NH_4)_2SO_4$ Give the name of the compound $(NH_4)_2SO_4$. [1] (i) (ii) Tick (\checkmark) the box that gives the correct reason why plants need nitrogen. [1] plants use nitrogen to make sugar plants use nitrogen to make water plants use nitrogen to make oxygen plants use nitrogen to make protein 1.5 kg of fertiliser treats an area of 75 m^2 . Calculate the mass needed to treat a lawn with an area of 15 m^2 . Give your answer in **grams**. (iii) [2]

18

				Examiner
(C)	Amn hydr	nonia is used to make many fertilisers. Ammonia gas is produced from nitrogen ogen using the Haber process.		only
	(i)	Balance the equation for the reaction between nitrogen and hydrogen in the Haber process.	[1]	
		N_2 + H_2 \longrightarrow NH_3		
	(ii)	State what is meant by the symbol \rightleftharpoons used in the reaction equation.	[1]	
	(iii)	A catalyst is used in the Haber process.		
		I. Give the name of the catalyst used.	[1]	
		II. State why a catalyst is used.	[1]	
				12

(a) The table shows some information about substances A-E. Soluble **Boiling point** Substance Malleable? Conducts electricity? in water? (°Č) Α 4200 no no no В -79 yes no no only when molten or С 1413 yes no in solution D 5555 no yes yes Е 2562 no yes yes Give the letters of the two substances which are metals. (i) [1] and Give the letter of the substance which could be carbon dioxide. [1] (ii) Give the **letter** of the substance which has a giant ionic structure. [1] (iii) Complete the dot and cross diagram to show the outer electrons in a chlorine (b) molecule, Cl₂. Each atom of chlorine has 7 electrons in its outer shell. [2] CI CI

6.

© WJEC CBAC Ltd.

(3410U20-1)

Examiner only

 (a) A student made some copper(II) sulfate crystals by reacting copper(II) carbonate powder with sulfuric acid using the following method. Stage 1 Measure 50 cm³ of sulfuric acid into a beaker. Stage 2 Add copper(II) carbonate powder, one spatula at a time, until all the acid has reacted. Stage 3 Filter the mixture. Stage 4 Obtain crystals from the solution. (i) State how you would carry out Stage 4 to get the largest possible crystals. [1] (ii) Crystals of copper(II) sulfate could also be made using copper(II) oxide powder instead of copper(II) carbonate powder. State and explain how the observations in Stage 2 would be different. [2] (iii) Complete the symbol equation for the reaction between copper(II) oxide and sulfuric acid. Copper(II) sulfate is one of the products. [2] CuO + H₂SO₄ →					
Stage 2 Add copper(II) carbonate powder, one spatula at a time, until all the acid has reacted. Stage 3 Filter the mixture. Stage 4 Obtain crystals from the solution. (i) State how you would carry out Stage 4 to get the largest possible crystals. [1] (ii) Crystals of copper(II) sulfate could also be made using copper(II) oxide powder instead of copper(II) carbonate powder. State and explain how the observations in Stage 2 would be different. [2] (iii) Complete the symbol equation for the reaction between copper(II) oxide and sulfuric acid. Copper(II) sulfate is one of the products. [2]	(a)				
has reacted. Stage 3 Filter the mixture. Stage 4 Obtain crystals from the solution. (i) State how you would carry out Stage 4 to get the largest possible crystals. [1] (ii) Crystals of copper(II) sulfate could also be made using copper(II) oxide powder instead of copper(II) carbonate powder. State and explain how the observations in Stage 2 would be different. [2] (iii) Complete the symbol equation for the reaction between copper(II) oxide and sulfuric acid. Copper(II) sulfate is one of the products. [2]		Stag	e 1	Measure 50 cm ³ of sulfuric acid into a beaker.	
Stage 4 Obtain crystals from the solution. (i) State how you would carry out Stage 4 to get the largest possible crystals. [1] (ii) Crystals of copper(II) sulfate could also be made using copper(II) oxide powder instead of copper(II) carbonate powder. State and explain how the observations in Stage 2 would be different. [2] (iii) Complete the symbol equation for the reaction between copper(II) oxide and sulfuric acid. Copper(II) sulfate is one of the products. [2]		Stag	e 2		id
 (i) State how you would carry out Stage 4 to get the largest possible crystals. [1] (ii) Crystals of copper(II) sulfate could also be made using copper(II) oxide powder instead of copper(II) carbonate powder. State and explain how the observations in Stage 2 would be different. [2] (iii) Complete the symbol equation for the reaction between copper(II) oxide and sulfuric acid. Copper(II) sulfate is one of the products. [2] 		Stag	e 3	Filter the mixture.	
 (ii) Crystals of copper(II) sulfate could also be made using copper(II) oxide powder instead of copper(II) carbonate powder. State and explain how the observations in Stage 2 would be different. [2] (iii) Complete the symbol equation for the reaction between copper(II) oxide and sulfuric acid. Copper(II) sulfate is one of the products. [2] 		Stag	e 4	Obtain crystals from the solution.	
 (iii) Complete the symbol equation for the reaction between copper(II) oxide and sulfuric acid. Copper(II) sulfate is one of the products. [2] 		(i)	State h	now you would carry out Stage 4 to get the largest possible crystals.	[1]
sulfuric acid. Copper(II) sulfate is one of the products. [2]		(ii)	instead	d of copper(II) carbonate powder. State and explain how the observation	ns in
$CuO + H_2SO_4 \longrightarrow H_2SO_4$		 (iii)			[2]
			CuO	+ H ₂ SO ₄ → +	

© WJEC CBAC Ltd.

Examiner only (iii) A hydrocarbon fuel was burned and used to heat 100 g of water. The water temperature rose from 18.5 °C to 38.2 °C. Use the equation below to calculate the amount of energy released by this fuel. Give your answer to two significant figures. [3] energy (J) = mass of water (g) \times 4.2 \times temperature rise (°C) The products of fractional distillation can undergo a process called cracking to produce (b) smaller, more useful hydrocarbons. Complete the equation for the cracking of $C_{16}H_{34}$. (i) [1] $C_{16}H_{34} \longrightarrow C_8H_{18} + \dots + C_2H_4$ State the two conditions used for cracking. [1] (ii) The molecule with the formula C_2H_4 is an unsaturated hydrocarbon. (iii) Give the meaning of the term unsaturated. [1] State why there is a high demand for each of the following products of the (iv) cracking reaction. [2] octane / C₈H₁₈ ethene / C₂H₄ 11 **END OF PAPER**

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only
		1

© WJEC CBAC Ltd.

POSITIVE IONS		NEGATI	VE IONS
Name	Formula	Name	Formula
aluminium	Al ³⁺	bromide	Br ⁻
ammonium	NH4 ⁺	carbonate	CO ₃ ²⁻
barium	Ba ²⁺	chloride	CI
calcium	Ca ²⁺	fluoride	F⁻
copper(II)	Cu ²⁺	hydroxide	OH⁻
hydrogen	H⁺	iodide	1-
iron(II)	Fe ²⁺	nitrate	NO ₃ ⁻
iron(III)	Fe ³⁺	oxide	0 ²⁻
lithium	Li ⁺	sulfate	SO4 ²⁻
magnesium	Mg ²⁺		
nickel	Ni ²⁺		
potassium	K ⁺		
silver	Ag ⁺		
sodium	Na ⁺		
zinc	Zn ²⁺		

FORMULAE FOR SOME COMMON IONS

							l
0	4 Helium 2	20 Neon 10	40 Ar 18	84 Kr 36	131 Xe 54	222 Rn Radon 86	
~		19 F Fluorine 9	35.5 CI Chlorine	80 Br 35	127 lodine 53	Astatine	
9		16 O Sygen 8	32 S Sulfur 16	79 Selenium 34	128 Te Tellurium 52	210 Po 84	
2		14 N Nitrogen 7	31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bismuth 83	
4		12 C Carbon 6	28 Silicon 14	73 Ge Gemanium 32	119 Sn 50	207 Pb Lead 82	
က		11 B 5	27 Al 13	70 Ga Gallium 31	115 In 1ndium 49	204 TI Thallium 81	
				65 Zn Zinc	112 Cd Cadmium 48	201 Hg Mercury 80	
				63.5 Cu Copper 29	108 Ag Silver 47	197 Au Gold 79	
				59 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78	
				59 Co Cobalt 27	103 Rh Rhodium 45	192 Ir Iridium 77	
dno	E.]		56 Fe Iron 26	101 Ruthenium 44	190 Osmium 76	Key
Group	Hydrogen			55 Mn Manganese 25	99 TC Technetium	186 Re Rhenium 75	
				52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74	
				51 V Vanadium 23	93 Nobium 41	181 Ta Tantalum 73	
				48 Ti Titanium 22	91 Zr Zirconium 40	179 Hf Hafnium 72	
				45 Sc 21	89 Y Yttrium 39	139 La Lanthanum 57	227 Actinium 89
2		9 Be Beryllium	24 Mg 12 12	40 Ca Calcium 20	88 Strontium 38	137 Ba Barium 56	226 Ra Radium 88
-		7 Li Lithium 3	23 Na Sodium	39 K Potassium 19	86 Rb Rubidium 37	133 Cs Caesium 55	223 Fr 87

Ar Symbol Name atomic mass

THE PERIODIC TABLE