Centre Number

Other Names

GCSE

C300UB0-1

A17-C300UB0-1

MATHEMATICS – Component 2 Calculator-Allowed Mathematics HIGHER TIER

MONDAY, 6 NOVEMBER 2017

- MORNING
- 2 hours 15 minutes

ADDITIONAL MATERIALS

A calculator will be required for this examination.

A ruler, protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer **all** the questions in the spaces provided.

If you run out of space, use the continuation page at the back of the booklet, taking care to number the question(s) correctly.

Take π as 3.14 or use the π button on your calculator.

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.

Unless stated, diagrams are not drawn to scale.

Scale drawing solutions will not be acceptable where you are asked to calculate.

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the need for good English and orderly, clear presentation in your answers.

For Examiner's use only				
Question	Maximum Mark	Mark Awarded		
1.	2			
2.	3			
3.	5			
4.	5			
5.	5			
6.	10			
7.	5			
8.	3			
9.	7			
10.	3			
11.	6			
12.	6			
13.	9			
14.	5			
15.	6			
16.	9			
17.	6			
18.	4			
19.	4			
20.	12			
21.	5			
Total	120			

Formula list

2

Area and volume formulae

Where r is the radius of the sphere or cone, l is the slant height of a cone and h is the perpendicular height of a cone:

Curved surface area of a cone =
$$\pi rl$$

Surface area of a sphere = $4\pi r^2$
Volume of a sphere = $\frac{4}{3}\pi r^3$
Volume of a cone = $\frac{1}{3}\pi r^2 h$

Kinematics formulae

Where *a* is constant acceleration, *u* is initial velocity, *v* is final velocity, *s* is displacement from the position when t = 0 and *t* is time taken:

v = u + at $s = ut + \frac{1}{2}at^{2}$ $v^{2} = u^{2} + 2as$

3

Turn over.

2.	Seb wants to travel around the world in 7 years' time. In total, he will need £4000.	Examiner only
	Seb has just been given £3000. He invests this in an account that pays 2.5% interest per annum.	
	How much extra money will Seb need in 7 years' time?Give your answer correct to the nearest pound.[3]	
	Extra money needed	

	$0 \leqslant r < 4$	4	
		4	
	4 ≤ <i>r</i> < 6	14	
	6 ≤ <i>r</i> < 10	10	
	10 <i>≤ r <</i> 14	2	
(a)	Calculate an estimate of the mean dail	ly rainfall in Hightown for September 2017.	[
•••••			
••••••			
			••••••
•••••			• • • • • • • • • • • • •
•••••			
(b)	The actual mean daily rainfall in Seaba	ank during September 2017 was 5·9 mm.	
	Explain how it is possible that the actu Seabank were both the same for Sept	al mean daily rainfall in Hightown and	[
			L
•••••			
•••••			

3. The table shows the daily rainfall in Hightown during September 2017.

Examiner only The score from the two spinners shown is 2 + 5 = 7. The score is the sum of the two outcomes. 4. 5 1 4 2 Δ 3 (a) What is the lowest possible score? [1] Is it possible to get a score \ge 9? (b) Give a reason for your answer. [1] Yes No Ryan says, (C) You can score 5 with these spinners by getting 1 + 4 or 2 + 3, so the probability of scoring 5 is $\frac{2}{\text{the number of possible outcomes}}$ Comment on Ryan's method. Find the probability of scoring 5. Comment on Ryan's method: [3]

Probability of scoring 5:

(a)	Solve $11x - 3 = 9x + 25$.	[3]
(b)	Factorise $5x^2 + 10x$.	[2]

BLANK PAGE

6.

only

Factorise $w^2 + 7w - 30$ and hence solve $w^2 + 7w - 30 = 0$. You must give both possible solutions to the equation. (iii) [3] Hence find the length of each of the parallel sides. [1] (iv) The diagram below shows a different trapezium. (b) 14.2 cm 3.3 cm V 18.6 cm Diagram not drawn to scale Calculate the size of the angle *y*. [4]

Examiner

C300UB01 11

	Metal	Density g/cm ³	
	Aluminium	2.70	
	Copper	8.96	
	Iron	7.87	
	Zinc	7.13	
A metal sr The readir	bhere of radius 3.6 cm is placed on the second state of the second secon	on weighing scales. 538 kg	
Which me	re is made from a single metal. tal is the sphere made from? show all your working.		

Each wheel or During April ea	h a truck has a diameter of 1·22 metres. ach wheel made $2\cdot 4 \times 10^6$ revolutions.	Exa c
How far did the	e truck travel in April? wer in kilometres.	[3]
	Distance travelled in April km	

© WJEC CBAC Ltd.

(C300UB0-1)

9. The diagram below shows triangle ABC.

•
•
•
•
 •
 •
•

15

© WJEC CBAC Ltd.

10.	(a)	The equations of Which one repres Circle your answe	sents a line that is	pelow. parallel to 3	x + y + 4 =	0?	[1]	Examiner only
			3x - y - 4 = 0		y = 3x - 4	1		
		y = 3x + 4	<i>y</i> =	4 - 3x		x + 3y + 4 = 0		
	•••••							
	(b)		s a gradient of 2 a of this straight lin in the form $y = n$	e.	rough the p	oint (0, 4).	[2]	
			<i>y</i> =					

Turn over.

Examiner only **12.** The diagram shows the aerial view of a hotel swimming pool. 20 metres 12 metres Diagram not drawn to scale A poster at the swimming pool gives the following information. Swimming pool length 20 metres Shallow end Deep end 1.4 metres 2.2 metres Diagram not drawn to scale The swimming pool is filled to the top with water. Calculate the possible volume of the water in the swimming pool. Give your answer in m³. You must state any assumption you make in calculating the volume. • Show how this assumption impacts on your solution. [6] Volume:

	Examiner only
Volume is m ³	
Assumption:	
Impact of this assumption on your solution:	

(C300UB0-1)

Examiner only

	Average speed	Time	
Monday	52 m.p.h.	3 hours 30 minutes	
Tuesday	45 m.p.h	2 hours 20 minutes	
Wednesday	44 m.p.h.	1 hour 45 minutes	
I		Total time: 7 hours 35 minutes	
1 litre is approximatelThe cost of fuel is £1.	nption was 40 miles per gall ly equal to 0·22 gallons. .25 per litre. st of the fuel Imran used for		[7

13. Imran records details of his car journeys for 3 days.

				Exa c
••••				
••••				
	•••••			
••••	•••••			
		n uguallu ananda a furthar 7 haura 25 minutaa travalling in his a		
	lmra (i)	n usually spends a further 7 hours 35 minutes travelling in his ca Give an estimate for Imran's weekly fuel bill.	ar during the week. [1]	
	(i) 	Give an estimate for Imran's weekly fuel bill. Why might this estimate be unrealistic?	[1]	
	(i) 	Give an estimate for Imran's weekly fuel bill.	[1]	
	(i) 	Give an estimate for Imran's weekly fuel bill. Why might this estimate be unrealistic?	[1]	
	(i) (ii)	Give an estimate for Imran's weekly fuel bill. Why might this estimate be unrealistic?	[1]	
	(i) (ii)	Give an estimate for Imran's weekly fuel bill. Why might this estimate be unrealistic?	[1]	
	(i) (ii)	Give an estimate for Imran's weekly fuel bill. Why might this estimate be unrealistic?	[1]	
	(i) (ii)	Give an estimate for Imran's weekly fuel bill. Why might this estimate be unrealistic?	[1]	
	(i) (ii)	Give an estimate for Imran's weekly fuel bill. Why might this estimate be unrealistic?	[1]	

(C300UB0-1)

Examiner only 15. At breakfast, the probability that Stefan has a bowl of cereal is 0.7. The probability of Stefan having a slice of toast for breakfast is independent of him having a bowl of cereal. The probability that Stefan has a bowl of cereal and a slice of toast is 0.28. Complete the tree diagram. [4] (a) Stefan has toast Stefan has cereal Stefan does not have toast Stefan has toast Stefan does not have cereal Stefan does not have toast Find the probability that Stefan has neither cereal nor toast for breakfast. [2] (b)

(C300UB0-1)

only 16. Shireen is trying to find the area of a field, ABCDE. She has taken a few measurements and written them on a sketch, as shown below. Ε D 20 metres 60° 15 metres С 45° В Diagram not drawn to scale Shireen has indicated • $D\widehat{C}A = 90^{\circ}$ DC = 20 metres • CA = 15 metres • $EAD = 60^{\circ}$ • $BAC = 45^{\circ}$ • She thinks that DA = EA and CA = BA. Shireen knows that BC and DE are not straight lines. Using the information Shireen has collected, calculate the area of the field. You must state any assumption you make in deciding on your method. [9]

Examiner

25	
	Examiner
	only
Area of the field m ²	
Assumption made:	

(b)	Compost is sold in cylindrical cardboard drums. A drum holds 30000 cm ³ of compost. The height of the drum is four times its radius.	Exa
	Calculate the radius of the drum. You must show all your working.	[4]
•••••		
•••••		
	Radius of the drum is cm	
Use 1	Radius of the drum is cm the formula method to solve $5(x^2 + 2x) = 73$.	[4]
		[4]
	the formula method to solve $5(x^2 + 2x) = 73$.	
	the formula method to solve $5(x^2 + 2x) = 73$.	
	the formula method to solve $5(x^2 + 2x) = 73$.	
······	the formula method to solve $5(x^2 + 2x) = 73$.	
	the formula method to solve $5(x^2 + 2x) = 73$.	
	the formula method to solve $5(x^2 + 2x) = 73$.	

© WJEC CBAC Ltd.

19.	<i>(</i> a)	Show that $x = 8 - \frac{10}{x}$ is a rearrangement of $x^2 - 8x + 10 = 0$.	Exam on	
10.	(4)	You must show each stage of your working.	[1]	
	·····			
	.			
	·····			
	(b)	Use the iteration formula		
		$x_{n+1} = 8 - \frac{10}{x_n}$ and $x_1 = 5$		
		to find a solution of $x^2 - 8x + 10 = 0$ correct to 2 decimal places. You must give all your calculated values of x_{n+1} .	[3]	
	••••••			
	••••••			
	••••••			
	•••••			
	•••••			
	•••••			
	•••••			
	•••••			

BLANK PAGE

29

Turn over.

(b)	(i)	Calculate an estimate for the acceleration at $t = 30$.	[3]	Examiner only
	(ii)	Tracey argues that this acceleration at $t = 30$ does not represent the typical acceleration of the motorcycle over the 60-second period. Explain why Tracey's argument is correct.	[1]	
(C)	v = 5 Find Give	the same period, the velocity of another motorcycle is given by the equation $5 + 0.001t^2$. the time for which the velocities of the two motorcycles were the same. this time correct to the nearest second. must show all your working.	[4]	

(C300UB0-1)

	02		
1. The diagram shows a co	one with a base diameter of 8.4 cm.	Exan or	amine only
	12·4 cm 6·3 cm		
	■ 8·4 cm		
	Diagram not drawn to scale		
Calculate the perpendicu	ular height of the cone.	[5]	

END OF PAPER

	Examiner only
For continuation only.	
© WJEC CBAC Ltd (C300UB0-1)	

BLANK PAGE