

GCSE MARKING SCHEME

AUTUMN 2017

GCSE MATHEMATICS - COMPONENT 1 (HIGHER) C300UA0-1

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

EDUQAS GCSE (9-1) Mathematics Autumn 2017MarkComme1(a) $2^3 \times 3^2 \times 5$ B3B2 for $2 \times 2 \times 2 \times 3 \times 3 \times 5$ or B1 for an attempt at the repeated division or for two correct factors set	
1(a) $2^3 \times 3^2 \times 5$ B3B3B3B3B3B1 for an attempt at the repeated division or formation of the second division division of the second division	
$2^3 \times 3^2 \times 5$ B3 B2 for $2 \times 2 \times 2 \times 3 \times 3 \times 5$ or B1 for an attempt at the repeated division or for	
	the factors (list, factor tree) with
first error	
1(b) 45B2FT the HCF of $3^2 \times 5 \times 7$ and 'their 2B1 for $3^2 \times 5 \times 7$ and 'their 2B1 for $3^2 \times 5$ or for any factor of 315 and 360 greater than 1	y common
1(c)(i)	
0.00054 B1	
1(c)(ii) B2 B1 for 0.8×10^5 seen answer of 80000	n or for a final
(8)	
*2.(a)(i) Valid criticism about the instruction or response boxes. e.g. 'You may want to tick more than one box.' or 'You may have used it to do something else like go on the internet.' or 'You may not have done any of these things.'	
*2.(a)(ii) Valid criticism about the vagueness of the E1 times used e.g. 'It does not say what <i>a lot</i> means.'	
*2.(b)(i) Valid comment. e.g. 'Not reliable as only 5 students.' or 'Not very reliable, she needs to ask more people'	
*2.(b)(ii) SIM only is better because e.g. 'the bills are less varied (as the range is £3 compared to £65 for Pay-as-you-go.)' or 'SIM only bills are all about the same' or 'Pay-as-you-go bills are more spread out'.	las the cheaper
Pay-as-you-go is better because e.g. 'the average monthly cost is less (as the mean is £12.75 compared to £16.25 for SIM only.' or 'Most Pay-as-you-go bills will be less than £12.75' or 'The mean Pay-as- you-go bill is lower than the lowest SIM only bill.'	as the cheaper

		[]
*3.(a)		
$ \begin{pmatrix} 9\\ 9.5 \end{pmatrix} $	B2	B1 for each element or
(9.5)	DZ	
		for $2\mathbf{p} = \begin{pmatrix} 10\\ 8 \end{pmatrix}$ or equivalent seen or
		for $\left(\frac{9}{9.5}\right)$ or for $\frac{9}{9.5}$ or for $\frac{9}{9.5}$
*3.(b)	DO	D4 for a surrent loss other but align attices
Line of correct length and direction:	B2	B1 for correct length but direction omitted or incorrect or for correct direction but incorrect length
	(4)	
*4. Correct construction with arcs	B2	B1 for correct arcs
		Tolerance ±2°
	(2)	
*5.(a) $x^2 - 3x - 10$	B2	B1 for $x^2 - 3x + \dots$ or for any three correct terms in $x^2 + 2x - 5x - 10$
*5.(b)		
18 <i>a</i>	B2	Accept 18 a^1 for 2 marks.
		B1 for $k \times a^1$ or equivalent
	(4)	
*6.(a)(i) y is inversely proportional to x indicated	B1	
*6.(a)(ii)		25
(x =) 0.25 or equivalent	B2	B1 for $100 = \frac{25}{x}$ seen
		Do not accept $y = 0.25$ or equivalent
*6(b) $\frac{4}{0.8}$ or equivalent	M1	Allow e.g. '1 metre every 0.2 seconds.'
	A 4	
5 (m/s)	A1	
	(5)	
*7(a)(i) 14π	B1	allow 43.96
*7(a)(ii)		
4	B1	
	l	L

*7(b)	Γ	[
(diameter =) 6 (cm)	B1	May be on diagram
9π or $\pi \times 9$ or equivalent	B2	Mark final answer B1 for $\pi \times 3^2$ or equivalent If no marks award SC1 for an answer of 36π or 144π
	(5)	
8. (a) $\left(\frac{16}{5} - \frac{9}{7} = \right)\frac{112}{35} - \frac{45}{35}$ or $2 - \frac{3}{35}$ $\frac{67}{35}$ or $1\frac{32}{35}$	M2 A1	M1 for $\frac{112}{35}$ or $\frac{45}{35}$ or $2 + \frac{7}{35} - \frac{10}{35}$
*8.(b) (<i>a</i> =) 28 (<i>b</i> =) 35 (<i>c</i> =) 55	B3	B1 for each correct value or B2 for 35 and attempting 4×7 and 11×5 or for a set of values in the correct ratio that are not 2-digit e.g. 56, 70, 110 or B1 for a common multiple of 5 and 7 or for two pairs of two-digit numbers in the ratio $4:5$ AND $7:11$
*8.(c) $205 \div 5 \times 8$ or equivalent	M1	Must be a complete method
328 (cm) or equivalent, CAO	A1	
	(8)	

*9.(a)				
	M2	May be in st	eps or as sta	atements
$3 \times \frac{4}{6} \times \frac{10}{5}$ or equivalent, seen or implied		e.g.		
		Workers	Tonnes	Hours
		6	5	2
		6	10	4
		or		
		Workers	Tonnes	Hours
		6	7.5	3
		6	10	4
		M1 for one c implied	orrect step s	seen or
		e.g. $3 \times \frac{10}{5}$	•	0.0
		or one corre		
		Workers	Tonnes	Hours
		1	1.25	3
		6	5	2
		6	7.5	3
		4	10	6
		8	10	3
		or equivalen		
		NB 4 worker		
		given and do	bes not score	e on its own
4 (hours)	A1			
*9.(b)				
Valid assumption. e.g. 'The goods are all of the same type.' or	E1	Allow 'The w take any bre		ot need to
'The vehicles used are the same.' or 'The goods can all be loaded into one vehicle.'		Do not allow the same we		an all lift
Valid impact. e.g. 'If the goods are heavier, they may take longer to load.' or 'The load time	E1	Allow 'The lo longer if they		
would be longer if the vehicle could not				
take all 10 tonnes at once.'	(5)			
10.(a)	(3)			
No (stated or implied) AND either a correct justification e.g. a comment such as 'He should have reversed the inequality sign in step 3	E2	E1 for No an justification. e.g. Stating to or	that step 3 is	s incorrect.
because he divided by -2' or ' it should be $x < \frac{-7}{-2}$ $x < 3.5'$		stating that e solution (no or stating the a	subst seen)	
or showing by substitution an example of a value of $x > 3.5$ is not a solution of the		x < 3.5		
original inequality or		stating that e solution (no		not a
showing by substitution an example of a value of of $x < 3.5$ is a solution of the original inequality				

10 (b)(i)		
10.(b)(i) Correct parabola through (–2, 0) and (2, 0).	B2	B1 for correct shape with intercepts relatively correct but roots not marked or for correct roots seen but shape of curve incorrect. Be generous with symmetry; ignore
		coordinates of vertex
10.(b)(ii) -2 < x < 2 or $x \in (-2, 2)$	B2	Accept $-2 < x$ and $x < 2$ or -2 < x, x < 2 or the interval $(-2, 2)for 2 marks.B1 for each correct endor for -2 < x \text{ or } x < 2or for 'their -2' < x < 'their 2',FT their intercepts from (b)(i)or for -2 \le x \le 2or for the correct region on thegraph in (b)(i) identified as thesolution set (including open circlesat each x-intercept)$
	(6)	. ,
11.(a)(i)	(0)	
22	B1	
11.(a)(ii) M LQ UQ IQR 9.2 8.9 9.4 to 9.5 0.5 to 0.6	B3	 B1 for correct median B1 for correct LQ and UQ B1 FT for correct IQR; FT 'their UQ' – 'their LQ' provided one is correct
11.(b)(i) Correct box plot: Whiskers from 8 to 10.4 Box from 8.9 to (9.4 to 9.5) Median at 9.2	B2	FT their values from (a)(ii) B1 FT for 2 out of 3 correct from whiskers, box, median
11.(b)(ii) Litestar <i>A</i> and a correct reason. e.g. 'She should buy tablet <i>A</i> as the median is greater (than tablet <i>B</i>).' or 'She should buy tablet <i>A</i> as the median is 0.3 hours more (than tablet <i>B</i>).' or 'She should buy tablet <i>A</i> as the shortest battery life is $\frac{1}{2}$ hour greater.' or 'Tablet <i>A</i> as the Lower quartile is more than the lower quartile of tablet <i>B</i> .'	E1	FT their values from (a)(ii) or their box plot from (b)(i) Allow 'Every statistic apart from the highest value is greater for Litestar <i>A</i> than for Litestar <i>B</i> .'

12.			
Sight of 8500 (grams) or 8.5 (kg) AND 10.5 (kg) or 10500 (grams)	B2	If units are given they must be correct. B1 for either	
$\frac{4 \times 10.5 + 20 \times 8.5 \text{ or}}{\frac{215 - 4 \times 10.5}{20}} \text{ or } \frac{\frac{215 - 20 \times 8.5}{4}}{4}$	M1	FT 'their 8.5 and 10.5' providing all are in the same units, 'their 8.5' > 8.4 and 'their 10.5' > 10	
212 or 8.65 or 11.25	A1	CAO	
212 kg < 215kg or 8.65kg > 8.5kg or 11.25 kg > 10.5kg or equivalent AND	E1	Dependent on at least B1 M1 having been previously awarded	
Mahima is correct.		FT 'their 212' <215 Comparison with 215 must be seen or implied Allow 'Mahima is wrong' if 'their 212' > 215	
	(5)		
$ \begin{array}{c} 13. \\ y(w-2x) = 5+x \end{array} $	M1	FT until second error. Correctly clears the fraction.	
wy - 2xy = 5 + x	M1	Multiplies out.	
wy-5 = x + 2xy or equivalent	M1	Collects <i>x</i> terms to one side.	
wy - 5 = x(1 + 2y)	M1	Factorises	
$x = \frac{wy - 5}{1 + 2y}$	A1	Divides Final answer; must be $x =$ not	
	(5)	- <i>x</i> =	
14.	(3)		
$(\sqrt[3]{64} =) 2^{\frac{6}{3}} \text{ or } 2^2$	B1		
$(4^9 =) [2^2]^9$ or 2^{18}	B1		
2 ^{2 -4 +18} or equivalent	M1	FT 'their 18' and 'their 2' providing	
		both are positive Complete method required.	
2 ¹⁶	A1	CAO	
· · · · · · · · · · · · · · · · · · ·		Alternative method 1:	
		$\sqrt[3]{64} \times 4^9 = 4^{10}$ seen or implied B1	
		$(4^{10} =) [2^2]^{10}$ or $(2^{-4} =) 4^{-2}$	
		seen or implied B1 2^{20-4} or 4^{10-2} or equivalent M1 2^{16} A1	
		2 ¹⁶ A1 Alternative method 2:	
		$(2^{-4} =) \frac{1}{16}$ seen or implied B1	
		$\sqrt[3]{64} \times \frac{1}{16} = \frac{1}{4}$ seen or implied B1	
		4 ^{9 -1} or equivalent M1	
		2 ¹⁶ A1	
	(4)		
	1		

15.]
	B4	B1 for the given 24, 28, 8, 0
		(shaded) correctly placed
P 12 0 6 18		D4 for the Element of the original Office
B 16 0 8 24		B1 for the 5's and remaining 0's correctly placed in the water column
K 0 5 3 8		P1 for 16 and 12 correctly placed or
28 5 17 50		B1 for 16 and 12 correctly placed or for the 16 and 8 correctly placed
		B1 for the 18 and 6 correctly placed or for the 17 and 6 correctly placed FT 'their 16' & 'their 12' or 'their 16' & 'their 8', i.e.18 and 18 – 'their 12' or 18 and 18 – (28 – 'their 16') or 17 and 17 – (8 – 'their 5') – 'their 8' or 17 and 17 – (8 – 'their 5') – (24 – 'their 16')
		May be probabilities or frequencies
$\frac{16+6}{50}$		FT 'their 16' and 'their 6' for M1 or M2
		M1 for sight of either $\frac{16}{50}$ or $\frac{6}{50}$ or
		equivalent or sight of 'their (16 + 6)'
$\frac{22}{50}$ or equivalent	A1	CAO
50		
	(7)	
16.		
BG = DF (pentagon regular, given)	B1	
Angle <i>AGB</i> = angle <i>EFD</i> (exterior angles of regular pentagon)	B1	
Angle <i>ABG</i> = angle <i>EDF</i> (exterior angles of regular pentagon)	B1	
All necessary reasons given		Allow exterior angles of a regular pentagon to be stated once only.
(Triangles are congruent) ASA		Dependent on all previous marks having been awarded.
	(5)	
17.(a)		
$(\text{length}=)\frac{22}{1+2\sqrt{3}}$	M1	
$1+2\sqrt{3}$		
$22 1 - 2\sqrt{3}$		
$\frac{22}{1+2\sqrt{3}} \times \frac{1-2\sqrt{3}}{1-2\sqrt{3}}$	M1	
$\frac{22 - 44\sqrt{3}}{1 - 4(3)}$	M1	
1-4(3) $-2+4\sqrt{3}$	A1	

17.(b)		[
$x = (-2 + 4\sqrt{3})^2 + (1 + 2\sqrt{3})^2$	M1	FT 'their $-2+4\sqrt{3}$ ' for M1 only
$4 - 8\sqrt{3} - 8\sqrt{3} + 16(3) +$		
$1 + 2\sqrt{3} + 2\sqrt{3} + 4(3) = 65 - 12\sqrt{3}$	A1	NB Answer is given
18.(a)	(6)	
Correct explanation. e.g. $\frac{8}{6} = \frac{4}{3}$ and $6^2 + 8^2 = 10^2$ or equivalent	B2	Must use both the gradient and the length of <i>OA</i> .
or		B1 for a correct partial explanation
draws a 3,4,5 triangle and a 6,8,10 triangle		e.g. $\frac{8}{6} = \frac{4}{3}$ or $6^2 + 8^2 = 10^2$ or
and states they are similar		6 3 equivalent or draws a 3,4,5 triangle and a 6,8,10 triangle
18.(b)		
(Gradient of tangent =) $\frac{-1}{\frac{4}{3}}$	M1	
$8 = -\frac{3}{4} \times 6 + c$	m1	FT 'their – ¾'
$y = -\frac{3}{4}x + \frac{25}{2}$ or equivalent	A1	CAO
$0 = -\frac{3}{4}x + \frac{25}{2}$	M1	FT their equation of <i>AB</i> providing the gradient is negative.
$\left(\frac{50}{3},0\right)$ or equivalent	A1	Allow a final answer of $x = \frac{50}{3}$
A		Alternative method 1:
10 8		Identifies similar triangles OAX and OBA, seen or implied M1
		$\frac{10}{6} = \frac{OB}{10}$, seen or implied M1
		$OB = 10 \times \frac{10}{6}$ M1
		$OB = \frac{100}{6}$ or equivalent CAO A1
		$B\left(\frac{50}{3},0\right)$ or equivalent A1
		Alternative method 2: Identifies similar triangles OXA and AXB, seen or implied M1
		$\frac{BX}{8} = \frac{8}{6}$, seen or implied M1
		$OB = 8 \times \frac{8}{6} + 6 \qquad M1$
		$OB = \frac{100}{6}$ or equivalent CAO A1
		$B\left(\frac{50}{3},0\right)$ or equivalent A1

$$\frac{A}{10} + \frac{A}{10} + \frac{A}{10}$$

19.(a)		↑
Translation through $\begin{pmatrix} 0\\k \end{pmatrix}$ where $k > 0$	B1	(0,4)
Correct coordinates seen or scale marked	B1	× (-4,2)
19.(b)	D4	Ť
Reflection in <i>y</i> -axis Correct coordinates seen or scale marked	B1 B1	*
		(0,3)
		(4,1)
	(4)	
20.(a)(i)	('/	
120	B2	B1 for $5 \times 4 \times 3 \times 2$ (×1) or 5! or
		equivalent
	B1	
$\frac{2}{5}$ or equivalent		
20.(b) 2160	B2	FT 18 × 'their 120'
2.00		
		B1 for $6 \times 5 \times 4 \times 3 \times 2 \times 3$ or $\frac{3}{7} \times 7!$
		1
	(5)	or equivalent
21.(a)	(-)	
$f^{-1}(x) = \frac{x-2}{5}$ or equivalent	B2	
5	DZ	Award B1 for $x = \frac{y-2}{5}$ or equivalent
		5 unless x and y interchanged later
		or
		SC1 for $y \text{ or } f^{-1}(x) = \frac{x+2}{5}$ or
		-
		equivalent
x^{-2} - 10		
$\frac{x-2}{5} = 10$	M1	
x = 52	A1	
		<u>Alternative method:</u> $f^{-1}(x) = 10$ means
		$f^{-1}(x) = 10$ means $x = f(10)$ B2
		f(10) = 5(10) + 2 M1 x = 52 A1
l	L	x = 52 A1

B1	Correct order of composition seen or implied.
M1	Seen or implied. Allow $(5x+2)^2 = 25x^2 + 20x + 4$ if
A1	$(5x+2)^3$ attempted NB Answer is given
B1	
(8)	
B3	B2 for sight of $\left(x - \frac{6}{2}\right)^2 - 3^2$
	or B1 for sight of $\left(x-\frac{6}{2}\right)^2 \pm \dots$
	Ignore '= 0' if seen.
B2	FT – 'their a ' and 11 + 'their b '
(5)	B1 for each coordinate.
	M1 A1 (8) B3