

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education (9–1)

	CANDIDATE NAME		
	CENTRE NUMBER	CANDIDATE NUMBER	
*			
7	CHEMISTRY		0971/31
3 7	Paper 3 Theory	y (Core)	May/June 2019
4			1 hour 15 minutes
3 9 2	Candidates ans	swer on the Question Paper.	
¢ 0	No Additional M	laterials are required.	

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid. DO NOT WRITE IN ANY BARCODES.

Answer all questions. Electronic calculators may be used. A copy of the Periodic Table is printed on page 20. You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 18 printed pages and 2 blank pages.

1 The diagrams show part of the structures of five substances, **A**, **B**, **C**, **D** and **E**.

(a) Answer the following questions about these structures. Each structure may be used once, more than once or not at all.

(i)	Which two of these structures, A, B, C, D or E, are covalently bonded?	
	and	[2]
(ii)	Which one of these structures, A, B, C, D or E, is a diatomic molecule?	
		[1]
(iii)	Which one of these structures, A, B, C, D or E, is a compound?	
		[1]
(iv)	Which one of these structures, A, B, C, D or E, is very soluble in water?	
		[1]
(v)	Which one of these structures, A, B, C, D or E, is used in cutting tools?	
		[1]
(vi)	Which one of these structures, A, B, C, D or E, is used in electrical wiring?	
		[1]

(b)	Substance B is an element.
	What is meant by the term <i>element</i> ?
	[1]
	[Total: 8]

4

- 2 This question is about iron and iron compounds.
 - (a) Name the main ore of iron. [1]
 - (b) In a blast furnace used for the extraction of iron, carbon reacts with oxygen from the air to form carbon monoxide.

Complete the chemical equation for this reaction.

$$\dots$$
C + \dots \rightarrow 2CO

[2]

(c) In the hotter parts of the furnace, carbon reacts with the iron(III) oxide present in the iron ore.

$$3C + Fe_2O_3 \rightarrow 3CO + 2Fe$$

How does this equation show that carbon is oxidised?

.....[1]

(d) Limestone is added to the blast furnace. The limestone is converted into calcium oxide and carbon dioxide. The reaction is endothermic.

$$CaCO_3 \xrightarrow{heat} CaO + CO_2$$

- (i) What type of chemical reaction is this?
 -[1]
- (ii) What type of oxide is calcium oxide? Give a reason for your answer.

.....[2]

(e) Iron is a metal.

Give **three** physical properties that are characteristic of metals.

1 2 3 [3] (f) The structure of a compound of iron is shown.

Deduce the molecular formula of this compound to show the number of iron, carbon and oxygen atoms.

......[1]

[Total: 11]

element	percentage by mass on Earth	percentage by mass in the Universe
helium	0.0	21.0
hydrogen	0.1	76.0
iron	35.0	1.0
magnesium	14.0	0.1
oxygen	29.0	0.8
silicon	14.0	0.1
sulfur	2.9	0.1
other elements		0.9
total	100.0	100.0

3 (a) The table shows the percentage by mass of the elements on Earth and in the Universe.

Answer these questions using only the information in the table.

(i) Deduce the percentage by mass of other elements present on Earth.

.....% [1]

- (ii) Which non-metallic element is present on Earth in the greatest percentage by mass?
 [1]
 (iii) Give two major differences in the percentage by mass of the elements on Earth and in the Universe.
 1
 2
 [2]
- (b) Complete the diagram to show the electron arrangement in an oxygen atom.

- (c) Helium, neon and argon are noble gases.
 - (i) Explain, in terms of the electronic structure, why neon is unreactive.

......[1]

(ii) State one use of argon.

[Total: 7]

- 4 This question is about iodine and compounds of iodine.
 - (a) Use the kinetic particle model to describe the separation between the molecules and the type of motion of the molecules in:

(b) The graph shows how the volume of iodine gas changes with pressure. The temperature is kept constant.

Describe how the volume of iodine gas changes with pressure.

......[1]

(c) (i) Complete the word equation to show the halogen and halide compound which react to form the products iodine and potassium bromide.

(ii) Explain, in terms of the reactivity of the halogens, why aqueous iodine does **not** react with aqueous potassium chloride.

......[1]

- (d) lodine reacts with aqueous sodium thiosulfate, $Na_2S_2O_3$.
 - (i) Balance the chemical equation for this reaction.

.

$$\dots Na_2S_2O_3 + I_2 \rightarrow Na_2S_4O_6 + \dots NaI$$
[2]

(ii) The energy level diagram for this reaction is shown.

5 Coal gas is made by heating coal in the absence of air. The list shows the main gases present in coal gas.

carbon dioxide carbon monoxide ethene hydrogen methane nitrogen

- - (ii) Draw the structure of a molecule of ethene. Show all of the atoms and all of the bonds.

(iii) Describe how aqueous bromine can be used to tell the difference between methane and ethene.

(b) Eth	nene molecules react with	n each other to	form poly(ethene)).	
(i)	What is the name giver	n to this type of	chemical reaction	?	
					[1]
(ii)	Which one of the follow Draw a circle around th			molecules in this reaction?	
	elements	mixtures	monomers	polymers	[1]
(iii)	Poly(ethene) is a non-b	iodegradable p	lastic.		
	What is meant by the te	erm <i>non-biodeg</i>	radable?		
					[1]
(iv)	Describe one pollution	-			
(c) Eth	nanol can be made from e		other reactant.		
•	Name the other reactar	nt.			
•	State the conditions ne	eded to make e	thanol from ether	10.	
-					
					[3]

[Total: 11]

- 6 This question is about copper and copper compounds.
 - (a) Describe how you could prepare a pure sample of crystals of hydrated copper(II) sulfate using dilute sulfuric acid and an excess of copper(II) oxide.

[3]

(b) Anhydrous copper(II) sulfate is used to test for water.

CuSO ₄ +	5H ₂ O	\rightleftharpoons CuSO ₄ .5H ₂ O
anhydrous		hydrated
copper(II) sulfate		copper(II) sulfate

- (i) What is meant by the symbol \rightleftharpoons ?
 -[1]
- (ii) How can hydrated copper(II) sulfate be changed into anhydrous copper(II) sulfate?

(c) Complete the table to calculate the relative formula mass of anhydrous copper(II) sulfate, $\rm CuSO_4.$

Use your Periodic Table to help you.

type of atom	number of atoms	relative atomic mass	
copper	1	64	1 × 64 = 64
sulfur			
oxygen			

relative formula mass =

[2]

(d) Complete the table to show the number of electrons, protons and neutrons in the sulfur atom and copper ion shown.

	number of electrons	number of neutrons	number of protons
³⁴ ₁₆ S			
⁶³ ₂₉ Cu ²⁺			29

[4]

- (e) Alloys of copper are used to make coins.
 - (i) What is meant by the term *alloy*?

......[1]

(ii) Suggest why an alloy of copper is used to make coins instead of using pure copper.

......[1]

[Total: 13]

7 A student investigates the rate of reaction of small pieces of calcium carbonate with an excess of hydrochloric acid of concentration 1 mol/dm³.

 $CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(I)$

(a) Name the salt formed when calcium carbonate reacts with hydrochloric acid.

(b) The graph shows how the mass of the reaction mixture changes with time.

```
......[1]
```

- 200.0 199.8-199.6 mass of reaction mixture /g 199.4 199.2-199.0 198.8 0 20 40 60 80 100 120 140 time/s
 - (i) State why the reaction mixture decreases in mass. [1]
 - (ii) Calculate the loss in mass during the first 40 seconds of the experiment.

..... g [1]

(iii) The experiment is repeated using hydrochloric acid of concentration 2 mol/dm³. All other conditions are kept the same.

Draw a line **on the grid** for the experiment using hydrochloric acid of concentration 2 mol/dm³. [2]

(iv) In the experiment, when 2.00g of calcium carbonate is used, the loss in mass of the reaction mixture is 0.88g.
 All other conditions are kept the same.

Calculate the loss in mass when 0.50 g of calcium carbonate is used.

loss in mass = g [1]

 (v) The experiment is repeated using the same mass of different sized pieces of calcium carbonate.
 All other conditions are kept the same.

The sizes of the pieces of calcium carbonate are:

- powder
- small pieces
- large pieces.

Complete the table by writing the sizes of the pieces of calcium carbonate in the first column.

size of pieces of calcium carbonate	initial rate of loss in mass in g/s
	0.005
	0.030
	0.100

[1]

[Total: 7]

8	(a) Su	Ifur dioxide is a pollutant in the air.
	(i)	State one source of sulfur dioxide in the air.
	(ii)	Sulfur dioxide is oxidised to sulfur trioxide in the air. Oxides of nitrogen act as catalysts for this reaction.
		What is meant by the term <i>catalyst</i> ?
	(iii)	Sulfur trioxide dissolves in rainwater to form acid rain.
		Which one of the following pH values could be the pH of acid rain? Draw a circle around the correct answer.
		рН 4 рН 7 рН 9 рН 13 [1]
	(iv)	State one adverse effect of acid rain on buildings.
		[1]
	(b) Su	Ifur dioxide melts at -73 °C and boils at -10 °C.
		nat is the physical state of sulfur dioxide at -20 °C? plain your answer.
	∟^ 	

(c) Excess sulfuric acid reacts with ammonia to make a salt which can be used as a fertiliser.

State the name of the salt formed when excess sulfuric acid reacts with ammonia.

......[1]

(d) The table shows some observations about the reactivity of four metals with dilute sulfuric acid.

metal	reaction with sulfuric acid
iron	a slow stream of bubbles is seen
magnesium	a rapid stream of bubbles is seen
nickel	a few bubbles slowly form
tungsten	no bubbles are seen

Use the information in the table to put the four metals in order of their reactivity. Put the least reactive metal first.

least reactive ----

most reactive

[2]

[Total: 9]

BLANK PAGE

BLANK PAGE

19

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

The volume of one mole of any gas is $24\,dm^3$ at room temperature and pressure (r.t.p.).

103 Lr lawrencium

101 Md mendelevium

I

102 No nobelium

fermium 100

99 ES einsteinium

98 Cf californium

97 BK ^{berkelium}

96 curium L

95 Am americium

94 Pu Plutonium

93 Np neptunium

92 U ^{uranium} 238

91 Pa protactinium 231

90 Th ^{thorium} 232

89 AC -

actinoids

	VIII	5	ЧĢ	helium 4	10	Ne	neon	.07	18	Ar	argon 40	36	, К	krypton 84	54	Xe	xenon 131	86	Rn	radon						
Group	٨II				6	ш	fluorine	19	17	Cl	chlorine 35.5	35	Ъ	bromine 80	53	I	iodine 127	85	At	astatine -				71	Lu	lutetium 175
	٨I				8	0	oxygen	16	16	ა	sulfur 32	34	Se	selenium 79	52	Те	tellurium 128	84	Ро	polonium –	116	۲<	livermorium –	70	Υb	ytterbium 173
	>				7	z	nitrogen	14	15	ሲ	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	Bi	bismuth 209				69	Tm	thulium 169
	\geq				9	U	carbon	12	14	N:	silicon 28	32	Ge	germanium 73	50	Sn	tin 119	82	Pb	lead 207	114	Fl	flerovium -	68	ц	erbium 167
					5	ш	boron	: :	13	Al	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	lΤ	thallium 204				67	Ч	holmium 165
												30	Zn	zinc 65	48	Cd	cadmium 112	80	Hg	mercury 201	112	Cn	copernicium -	99	Dy	dysprosium 163
												29	Cu	copper 64	47	Ag	silver 108	79	Au	gold 197	111	Rg	roentgenium -	65	Tb	terbium 159
												28	ïZ	nickel 59	46	Ъd	palladium 106	78	Ę	platinum 195	110	Ds	darmstadtium -	64	Ъд	gadolinium 157
					_							27	ပိ	cobalt 59	45	Rh	rhodium 103	17	Ir	iridium 192	109	Mt	meitnerium -	63	Еu	europium 152
		-	I	hydrogen 1								26	Fе	iron 56	44	Ru	ruthenium 101	76	Os	osmium 190	108	Hs	hassium –	62	Sm	samarium 150
				Key								25	Mn	manganese 55	43	р	technetium -	75	Re	rhenium 186	107	Bh	bohrium –	61	Pm	promethium -
					atomic number	atomic symbol		ass				24	C	chromium 52	42	Mo	molybdenum 96	74	8	tungsten 184	106	Sg	seaborgium -	60	ΡN	neodymium 144
							name relative atomic mass	ative atomic m				23	>	vanadium 51	41	Νb	niobium 93	73	Ъ	tantalum 181	105	Db	dubnium –	59	Pr	praseodymium 141
						atc		Lei				22	F	titanium 48	40	Zr	zirconium 91	72	Ħ	hafnium 178	104	Rf	rutherfordium —	58	Ce	cerium 140
												21	Sc	scandium 45	39	≻	yttrium 89	57-71	lanthanoids		89–103	actinoids		57	La	lanthanum 139
	=				4	Be	beryllium	ъ :	12	Mg	magnesium 24	20	Ca	calcium 40	38	ي ا	strontium 88	56	Ba	barium 137	88	Ra	radium -		ids	
	_				3	:	lithium 3		1	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	Ļ	francium –		lanthanoids	

20

The Periodic Table of Elements

0971/31/M/J/19