

Cambridge IGCSE[™] (9–1)

	CANDIDATE NAME		
	CENTRE NUMBER	CANDID. NUMBER	
*			
6 7	CHEMISTRY		0971/31
4 6	Paper 3 Theory	(Core)	May/June 2020
3 9			1 hour 15 minutes
_			
3	You must answe	er on the question paper.	
¢	No additional m	sterials are peeded	

No additional materials are needed.

INSTRUCTIONS

- Answer all questions. •
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. •
- Write your name, centre number and candidate number in the boxes at the top of the page. •
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid. •
- Do not write on any bar codes. •
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets []. •
- The Periodic Table is printed in the question paper.

1 (a) A list of symbols and formulae is shown.

A <i>l</i> ³⁺
\mathbf{CH}_4
CO_2
Fe ³⁺
N_2
NO_2
O ₂
O ^{2–}
Zn ²⁺

Answer the following questions about these symbols and formulae. Each symbol or formula may be used once, more than once or not at all.

Which symbol or formula represents:

(i)	a compound which contributes to acid rain
	[1]
(ii)	a compound which is a product of respiration
	[1]
(iii)	a gas which forms 21% of clean dry air
	[1]
(iv)	an ion which forms a red-brown precipitate when added to aqueous sodium hydroxide
	[1]
(v)	an ion formed when an atom gains electrons?
	[1]

(b) Complete the table to show the relative charge and approximate relative mass of a proton, a neutron and an electron.

type of particle	relative charge	approximate relative mass
proton	+1	
neutron		
electron		$\frac{1}{2000}$

(c) Deduce the number of electrons and neutrons in an atom of the isotope of iron shown.

⁵⁸ ₂₆ Fe
number of electrons
number of neutrons

[Total: 10]

name of ion	formula of ion	mass of ion in 1000 cm ³ of soil solution/mg
aluminium	Al ³⁺	0.1
	NH4 ⁺	35.0
calcium	Ca ²⁺	1.3
iron(II)	Fe ²⁺	47.0
magnesium	Mg ²⁺	0.2
	NO ₃ -	23.0
phosphate	PO ₄ ^{3–}	4.2
potassium	K⁺	99.0
sulfate	SO4 ²⁻	7.5

A solution is obtained by filtering a mixture of soil and water. The table shows the mass of some of 2 the ions in 1000 cm³ of this solution.

- (a) Answer these questions using the information in the table
- (i) Which negative ion has the lowest concentration? (ii) State the name of the NO_3^- ion.[1] (iii) Calculate the mass of phosphate ions in 250 cm³ of this solution. mass = mg [1] (iv) Name the compound that contains NH_4^+ ions and PO_4^{3-} ions.[1] (b) Describe a test for potassium ions.
 - test observations [2]

(c) The names and formulae for some compounds are shown.

aluminium phosphate, $A1PO_4$ calcium phosphate, $Ca_3(PO_4)_2$ potassium phosphate, K_3PO_4

Deduce the formula for magnesium phosphate.

......[1]

[Total: 7]

- 3 Many compounds and elements have important uses.
 - (a) Complete the table to show the name, formula and use of each compound and element.

name of compound or element	number of atoms in the formula	formula	use
chlorine	chlorine = 2	Cl ₂	
	carbon = 1 hydrogen = 4	CH_4	
calcium carbonate	calcium = 1 carbon = 1 oxygen = 3		

[5]

(b) The table shows the minimum temperature for the reduction of four metal oxides by carbon.

metal oxide	minimum temperature for reduction by carbon
calcium oxide	not reduced at 1530 °C
iron(II) oxide	reduced at 650 °C
titanium oxide	reduced at 1530 °C
zinc oxide	reduced at 720 °C

Put the four metals in order of their reactivity. Put the least reactive metal first.

-

least reactive

[2]

most reactive

(c)	Anł	hydrous copper(II) sulfate, $CuSO_4$, is used to test for water.
	(i)	Describe the change in colour when water is added to anhydrous copper(II) sulfate.

	from to	[2]
(ii)	This reaction is reversible.	
	Describe how this reaction can be reversed.	
		[1]
(iii)	State one use of water in industry.	
		[1]
	[Total:	11]

4 The properties of five alkenes at room temperature are shown in the table.

alkene	number of carbon atoms in a molecule	state at room temperature	density in g/cm ³	boiling point /°C
ethene	2	gas	0.0012	-104
propene	3	gas	0.0018	-47
butene	4	gas	0.0024	
pentene	5	liquid	0.64	30
hexene	6	liquid	0.67	63

.....°C [1]

- (a) Answer these questions using only the information in the table.
 - (i) Predict the boiling point of butene.

(ii)	Describe the general trend in the density of the alkenes.	
()		[1]
(iii)	Suggest why the densities of the first three alkenes are much lower than the den pentene and hexene.	
		[1]
(b) (i)	Complete the chemical equation for the complete combustion of propene.	
	$2C_3H_6$ + $O_2 \rightarrow 6CO_2$ + $6H_2O$	[1]
(ii)	Describe a test for carbon dioxide.	
	test	
	observations	[2]
(iii)	Universal indicator is added to an aqueous solution of carbon dioxide.	
	What colour change is observed?	
	from green to	
	Give a reason for your answer.	
		[2]

(C)	When propene	undergoes	incomplete	combustion,	carbon	monoxide is	formed.
-----	--------------	-----------	------------	-------------	--------	-------------	---------

(i) What condition is needed for incomplete combustion?

(ii) Give **one** adverse effect of carbon monoxide on health. [1] [1] [Total: 10] **5** When concentrated hydrochloric acid is electrolysed, gases are produced at the electrodes.

The incomplete apparatus is shown.

	concentrated hydrochloric acid
(a) (i)	Complete the diagram by:
	 labelling the anode and cathode showing how the gases are collected.
(ii)	Predict the products of this electrolysis at the:
	positive electrode
	negative electrode
(iii)	Graphite (carbon) electrodes are used in this electrolysis.
	Suggest one other element that can be used as an electrode and give a reason, other than that it can conduct electricity.
	element
	reason[2]

(b) Hydrogen chloride is produced when chlorine reacts with hydrogen.

Complete the chemical equation for this reaction.

 Cl_2 +HCl [2]

(c) Aqueous chlorine reacts with aqueous sodium iodide.

 Cl_2 + 2NaI \rightarrow I_2 + 2NaCl

(i) How does this reaction show that chlorine is more reactive than iodine?

(ii) What colour is iodine in aqueous solution?

......[1]

[Total: 10]

- 6 Acids have characteristic properties.
 - (a) Hydrochloric acid reacts with magnesium.

Name the products of this reaction and give the observations.

[4]

(b) The rate of reaction of iron(II) carbonate with hydrochloric acid can be determined by measuring the time taken to produce 20 cm³ of carbon dioxide.

A student measured the time taken to produce 20 cm³ of carbon dioxide at three different temperatures.

In each experiment the student used:

- 1 g of large pieces of iron(II) carbonate
- dilute hydrochloric acid of the same concentration and volume.

The results are shown in the table.

temperature /°C	time /s
20	38
25	30
30	19

(i) Use the information in the table to describe how the rate of reaction changes with temperature.

(ii) Describe the effect of each of the following on the rate of this reaction at constant temperature. Smaller pieces of iron(II) carbonate are used. All other conditions stay the same. The concentration of hydrochloric acid is decreased. All other conditions stay the same. [2] (c) The reaction of iron(II) carbonate with hydrochloric acid is exothermic. What is meant by the term exothermic?[1] (d) Rust contains compounds of iron. State two conditions needed for iron to rust.[2] (e) Iron and magnesium are both used in alloys.

Which one of these diagrams, A, B, C or D, best represents an alloy?

7 The structure of myrcene is shown.

- (a) Deduce the formula of myrcene to show the number of atoms of carbon and hydrogen.
 [1]
- (b) Myrcene is found in some plants.

The coloured compounds in plant leaves can be separated by chromatography.

Complete the diagram by putting the correct labels in the boxes.

101	
1.71	
L— J	

(c) Myrcene is an unsaturated hydrocarbon.

 (d) Butane is a saturated hydrocarbon.

To which homologous series does butane belong?

Draw a circle around the correct answer.

(e) Large hydrocarbons can be cracked to form smaller hydrocarbons.

Complete the chemical equation for cracking tridecane, $C_{13}H_{28}$, to form an alkene and one other hydrocarbon.

$$C_{13}H_{28} \rightarrow C_{3}H_{6} + \dots$$
[1]

(f) Ethene is an alkene.

Draw the structure of ethene showing all of the atoms and all of the bonds.

[1]

(g) Complete the sentences about the separation of hydrocarbons from petroleum using words from the list.

bitumen	combustion	condense	crystallisation	distillation
evap	oorate gasol	ine ker	osene me	lt
Hydrocarbons	are separated in	a fractionating	column by fractio	nal
Hydrocarbons v	with lower boiling p	oints move furt	her up the column.	When the temperature
in the column fa	alls below the boilir	ng points of the	hydrocarbons they	The
fraction at the b	ottom of the column	which is used f	or making roads is c	alled[3]

[Total: 12]

8 The diagram shows part of the structures of sodium bromide and sulfur.

- (a) Describe both sodium bromide and sulfur in terms of:
 - bonding

	electrical conductivity
	• solubility in water.
	[5]
(b)	Sulfur is an element.
	What is meant by the term <i>element</i> ?
	[1]

(c) Sodium can be extracted from sodium bromide by electrolysis.

Sodium is a metal in Group I of the Periodic Table.

(i) Describe one chemical property of sodium.

......[1]

(ii) Which two of these statements about the physical properties of sodium are correct?

Tick **two** boxes.

Sodium is very hard.	
Sodium has a high density.	
Sodium conducts electricity.	
Sodium is malleable.	
Sodium does not conduct heat.	

[2]

[Total: 9]

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

The volume of one mole of any gas is $24\,dm^3$ at room temperature and pressure (r.t.p.).

103 Lr awrencium

101 Md mendelevium

102 No nobelium

100 **H**

99 ES einsteinium

98 Cf californium

97 BK ^{berkelium}

96 C Unium -

95 Am americium

94 Putonium _

93 Np Ineptunium

92 U ^{uranium} 238

91 Pa protactinium 231

90 Th ^{thorium} 232

89 AC -

actinoids

								Grc	Group								
_	=											≡	≥	>	5	IN	IIIV
							- :										2
							T										He
				Key			hydrogen 1										helium 4
	4		.0	atomic number		J						5	9	7	8	6	10
	Be		ato	atomic symbol	loc							ш	ပ	z	0	ш	Ne
lithium 7	beryllium 9		rela	name relative atomic mass	SS							boron 11	carbon 12	nitrogen 14	oxygen 16	fluorine 19	neon 20
-	12	_										13	14	15	16	17	18
g	Mg											Ρl	Si	٩	S	Cl	Ar
sodium 23	magnesium 24											aluminium 27	silicon 28	phosphorus 31	sulfur 32	chlorine 35.5	argon 40
6	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
×	Ca	Sc	Ħ	>	ŗ	Мл	Ъe	ပိ	Ī	Cu	Zn	Ga	Ge	As	Se	Ŗ	Ъ
potassium 39	calcium 40	scandium 45	titanium 48	vanadium 51	chromium 52	manganese 55	iron 56	cobalt 59	nickel 59	copper 64	zinc 65	gallium 70	germanium 73	arsenic 75	selenium 79	bromine 80	krypton 84
2	38	39	40		42	43	44	45	46	47	48	49	50	51	52	53	54
q	S	≻	Zr		Mo	Ъ	Ru	Rh	Ъd	Ag	Cq	In	Sn	Sb	Те	Ι	Xe
rubidium 85	strontium 88	yttrium 89	zirconium 91	niobium 93	molybdenum 96	technetium -	ruthenium 101	rhodium 103	palladium 106	silver 108	cadmium 112	indium 115	tin 119	antimony 122	tellurium 128	iodine 127	xenon 131
	56	57-71	72		74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	lanthanoids	Ŧ	Та	×	Re	Os	Ir	ħ	Au	Hg	11	Pb	Bi	Ро	At	Rn
caesium 133	barium 137		hafnium 178	tantalum 181	tungsten 184	rhenium 186	osmium 190	iridium 192	platinum 195	gold 197	mercury 201	thallium 204	lead 207	bismuth 209	polonium I	astatine -	radon -
87	88	89-103	104	105	106	107	108	109	110	111	112		114		116		
Ļ	Ra	actinoids	Ŗ	Db	Sg	Bh	Hs	Mt	Ds	Rg	ü		ĿΙ		۲<		
irancium -	radium -		rutherfordium -	dubnium –	seaborgium -	bohrium –	hassium -	meitnerium -	darmstadtium -	roentgenium -	copernicium -		flerovium -		livermorium –		
		57	58	59	60	61	62	63	64	65	99		68	69	70	71	
lanthanoids	ds	La	Ce	P	ΡQ	Ът	Sm	Еu	Gd	Tb	D		ш	Tm	٩۲	Lu	
		lanthanum 139	cerium 140	praseodymium 141	neodymium 144	promethium -	samarium 150	europium 152	gadolinium 157	terbium 159	dysprosium 163	holmium 165	erbium 167	thulium 169	ytterbium 173	lutetium 175	
	-			Ì	t		t	Ī	Ì	Ì	I			ļ			

© UCLES 2020

The Periodic Table of Elements

0971/31/M/J/20

20