

Cambridge IGCSE[™] (9–1)

	CANDIDATE NAME		
	CENTRE NUMBER		IUMBER
*			
6	CHEMISTRY		0971/32
	Paper 3 Theory	(Core)	May/June 2022
м			1 hour 15 minutes
9 2			
4	You must answe	er on the question paper.	
1 6 T			
× 📃	No additional m	atorials are needed	

No additional materials are needed.

INSTRUCTIONS

- Answer all questions. •
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. •
- Write your name, centre number and candidate number in the boxes at the top of the page. •
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid. •
- Do not write on any bar codes. •
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets []. •
- The Periodic Table is printed in the question paper.

This document has 20 pages. Any blank pages are indicated.

- **1** (a) A list of symbols and formulae is shown.
 - Br⁻ CH₄ CO₂ Cu²⁺ H₂ K⁺ Na⁺ N₂ O₂ U

Answer the following questions using these symbols or formulae. Each symbol or formula may be used once, more than once or not at all.

State which symbol or formula represents:

(i)	a compound that is a product of respiration	
		[1]
(ii)	an ion that gives a lilac colour in a flame test	
		[1]
(iii)	a gas which is 21% of clean, dry air	
		[1]
(iv)	an element that has a radioactive isotope used as a source of energy	
		[1]
(v)	an ion formed when an atom gains an electron.	
		[1]

(b) Complete the table to show the relative masses of a proton, a neutron and an electron.

type of particle	relative mass
proton	1
neutron	
electron	

© UCLES 2022

[2]

(c) Choose the two correct statements about carbon dioxide. Tick (✓) **two** boxes.

Carbon dioxide is a mixture of two elements.

Carbon dioxide is an acidic oxide.

Carbon dioxide has ionic bonding.

Carbon dioxide has a giant covalent structure.

There are three atoms in a molecule of carbon dioxide.

[2]

[Total: 9]

2 The table shows the masses of some ions in a 1000 cm³ sample of toothpaste.

- (a) Answer these questions using only the information in the table.
 - (i) State which positive ion has the lowest mass in 1000 cm³ of toothpaste.

 - (iii) Calculate the mass of sodium ions in 200 cm³ of toothpaste.

mass = g [1]

(b)	Describe a test for chloride ions.	
	test	
	observations	
	[2]	l

(c) Toothpaste also contains glycerol. The structure of glycerol is shown.

Deduce the formula of glycerol to show the number of atoms of carbon, hydrogen and oxygen.

......[1]

- (d) Glycerol is an alcohol. Ethanol is also an alcohol.
 - (i) Draw the structure of ethanol to show all of the atoms and all of the bonds.

		[1]
(ii)	Name the two products formed when ethanol undergoes complete combustion.	
	and	[2]
(iii)	Give one use of ethanol.	
		[1]
	[Total:	10]

- 3 This question is about Group I and Group VII elements.
 - (a) Deduce the number of electrons, neutrons and protons in one atom of the isotope of potassium shown.

⁴⁰₁₉K

(b) Complete the chemical equation for the reaction of potassium with water to form potassium hydroxide and a gas which pops with a lighted splint.

$$2K + \dots H_2O \rightarrow 2KOH + \dots$$
 [2]

[2]

(c) The table shows some properties of four Group I elements.

element	melting point /°C	boiling point /°C	relative hardness
lithium	181	1342	5.0
sodium		883	0.7
potassium	63	760	
rubidium	39	686	0.2

- (i) Complete the table by predicting:
 - the melting point of sodium
 - the relative hardness of potassium.
- (ii) Predict the physical state of potassium at 100 °C. Give a reason for your answer.

.....[2]

7

(d) Aqueous bromine reacts with aqueous potassium iodide.

Br ₂ +	2KI	\rightarrow 2KBr	+	I_2
-------------------	-----	--------------------	---	-------

(i) Explain how this equation shows that bromine is more reactive than iodine. (ii) State the colour of aqueous iodine.[1] (e) Bromine is a diatomic molecule. State the meaning of the term *diatomic*.[1] (f) Bromine liquid turns into a gas very easily at room temperature. Choose the word which best describes a substance that evaporates easily. Draw a circle around your chosen answer. flammable conductor malleable volatile [1] 8

- 4 This question is about acids and bases.
 - (a) Name the type of chemical reaction which occurs when an acid reacts with a base.
 - (b) Describe the colour of litmus in acidic and alkaline solutions.

in acidic solution

(c) Complete the word equation for the reaction of nitric acid with calcium hydroxide.

- (d) When nitric acid reacts with calcium hydroxide, the temperature of the reaction mixture increases.
 - (i) Choose the word which best describes this reaction.

Draw a circle around your chosen answer.

decomposition	endothermic	exothermic	oxidation	[1]
uccomposition	CHAOLICETHIC	CAULICITIC	UNIGATION	111

- (ii) Complete the energy level diagram for the reaction of nitric acid with calcium hydroxide by writing the words:
 - reactants
 - products.

[1]

[2]

(e) Calcium hydroxide is slaked lime.

Give one use of slaked lime.

......[1]

[Total: 8]

- **5** This question is about aluminium.
 - (a) The changes of state of aluminium are shown.

			solid aluminium	A	liquid aluminium	B	aluminium gas	
	Nar	me the	changes of s	state represe	nted by A an	d B .		
	Α.							
	Β.							
								[2]
(b)			netic particle	e model to de	scribe the di	fferences bet	ween solid al	uminium and liquid
	•			of the narticles	3			
	•	the al	rangement c		5			
	•	the se	paration of t	he particles				
	•			ne particles.				
								[4]
(c)	Δlu	minium	ore contain	s aluminium o	ovide			
(0)				e of aluminiu				
	(i)	INAILIE						[1]
	/::)	Alumi	nium in ovtro					[1]
	(ii)					e by electroly		n with carbon
		⊏хріа	in why alumi	nium is exita	cied by elect	rolysis and no	or by reduction	n with carbon.
								[4]
								[1]

(d) Aluminium can be used to reduce iron(III) oxide to iron.

 $Fe_2O_3 + 2Al \rightarrow 2Fe + Al_2O_3$

Describe how this equation shows that iron(III) oxide is reduced.

 (e) Aluminium is used for electric cables.

 State one other use of aluminium.

 Give a reason for this use in terms of the properties of aluminium.

 use of aluminium

 reason for this use

 [2]

 (f) Deduce the electronic structure of aluminium.

 Use the Periodic Table to help you.

 [1]

 [1]

 [1]

 [1]

 [1]

 [1]

 [1]

 [1]

 [1]

6 (a) The structures of four organic compounds, C, D, E and F, are shown.

(c) Complete the table to show the name and uses of some petroleum fractions.

name of fraction	use of fraction
naphtha	
diesel oil (gas oil)	
	making roads

[3]

[Total: 10]

- 7 This question is about sodium and compounds of sodium.
 - (a) Sodium is a metal in Group I of the Periodic Table.
 - (i) Give two physical properties of all metals.
 - 1 2 [2]
 - (ii) Give **one** physical property of Group I metals that is different from most other metals and state how it is different.

......[1]

(b) Sodium reacts with oxygen to form sodium oxide, Na₂O.

.

Complete the chemical equation for this reaction.

$$\dots Na + O_2 \rightarrow \dots Na_2 O$$
 [2]

(c) The diagram shows the apparatus used to electrolyse molten sodium iodide.

- (i) Complete the diagram by labelling:
 - the electrolyte
 - the cathode.

(ii) Name the products formed at each electrode.

[2]

(d) A compound of sodium has the formula $Na_2S_2O_3$.

Complete the table to calculate the relative molecular mass of $Na_2S_2O_3$.

atom	number of atoms	relative atomic mass	
sodium	2	23	2 × 23 = 46
sulfur		32	
oxygen		16	

[Total: 11]

8 A student investigates the reaction of small pieces of calcium carbonate with dilute hydrochloric acid. The hydrochloric acid is in excess.

$$CaCO_3 + 2HCl \rightarrow CaCl_2 + CO_2 + H_2O$$

The rate of reaction is found by measuring the volume of carbon dioxide gas produced as time increases.

The results are shown on the graph.

(a) Deduce the volume of carbon dioxide gas at 35 s.

volume = cm³ [1]

(b) The experiment is repeated at a higher temperature.

All other conditions stay the same.

Draw a line **on the grid** to show how the volume of carbon dioxide gas produced changes as time increases. [2]

(c) Describe the effect each of the following has on the rate of reaction of calcium carbonate with dilute hydrochloric acid.

All other conditions stay the same.

- The reaction is carried out using a higher concentration of hydrochloric acid.
- The reaction is carried out using powdered calcium carbonate.
 [2]
- (d) When 0.11 g of calcium carbonate is used, 25 cm³ of carbon dioxide gas is produced.
 Calculate the mass of calcium carbonate needed to produce 100 cm³ of carbon dioxide gas.

mass of calcium carbonate = g [1]

(e) State one use of calcium carbonate. [1]

[Total: 7]

BLANK PAGE

17

BLANK PAGE

18

BLANK PAGE

19

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The volume of one mole of any gas is $24\,dm^3$ at room temperature and pressure (r.t.p.).

	<pre>NII</pre>	² He	4	10	Ne	neon 20	18	Ar	argon 40	36	Kr	ypton 84	54	Xe	enon 131	86	Зn	adon -										
			-																					_	E			ium
	∣⋝			6	ш	fluorin 19	17	C	chlorine 35.5	35	Ъ	bromir 80	53	Ι	iodin 127	85	At	astatine -					71	Lu	Iutetium 175	103	_	lawrencium -
	>			8	0	oxygen 16	16	ა	sulfur 32	34	Se	selenium 79	52	Те	tellurium 128	84	Ро	polonium –	116	Γ<	livermorium -		70	γb	ytterbium 173	102	No	nobelium -
	>			7	z	nitrogen 14	15	٩	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	B	bismuth 209					69	Tm	thulium 169	101	Md	mendelevium -
	≥			9	ပ	carbon 12	14	Si	silicon 28	32	Ge	germanium 73	50	Sn	tin 119	82	РЬ	lead 207	114	Γl	flerovium -		68	ч	erbium 167	100	Еm	fermium -
	≡			5	ш	boron 11	13	Al	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	Tl	thallium 204					67	Ч	holmium 165	66	Еs	einsteinium –
										30	Zn	zinc 65	48	Cq	cadmium 112	80	Нg	mercury 201	112	С	copernicium -		66	Dy	dysprosium 163	86	Ç	californium –
										29	Cu	copper 64	47	Ag	silver 108	79	Au	gold 197	111	Rg	roentgenium -		65	Tb	terbium 159	97	ВĶ	berkelium -
dn										28	ïZ	nickel 59	46	Ъd	palladium 106	78	Ę	platinum 195	110	Ds	darmstadtium -		64	Gd	gadolinium 157	96	Cm	curium
Group										27	ပိ	cobalt 59	45	Rh	rhodium 103	17	Ir	iridium 192	109	Mt	meitnerium -		63	Еu	europium 152	95	Am	americium -
		← T acceleration	nyarogen 1							26	Бе	iron 56	44	Ru	ruthenium 101	76	SO	osmium 190	108	Hs	hassium -		62	Sm	samarium 150	94	Pu	plutonium –
										25	Mn	manganese 55	43	Ч	technetium -	75	Re	rhenium 186	107	Bh	bohrium –		61	Ът	promethium -	93	Np	neptunium -
					loc	SS				24	ŗ	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -		60	ΡN	neodymium 144	92		uranium 238
			Key	atomic number	atomic symbol	name relative atomic mass				23	>	vanadium 51	41	qN	niobium 93	73	Та	tantalum 181	105	Db	dubnium –		59	Pr	praseodymium 141	91	Ра	protactinium 231
				ιD	ato	rela				22	F	titanium 48	40	Zr	zirconium 91	72	Hf	hafnium 178	104	Rf	rutherfordium 		58	Ce	cerium 140	06	Тh	thorium 232
			ļ	L						21	Sc	scandium 45	39	≻	yttrium 89	57-71	lanthanoids		89-103	actinoids			57	La	lanthanum 139	89	Ac	actinium -
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ي ا	strontium 88	56	Ba	barium 137	88	Ra	radium -							
	_					lithium 7	11		sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	Ļ	francium -			lanthanoids			actinoids	
							1			1												J					.0	

The Periodic Table of Elements

0971/32/M/J/22

20