

Mark Scheme (Results)

Summer 2022

Pearson Edexcel International GCSE In Chemistry (4CH1) Paper 2C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022 Question Paper Log Number P70947A Publications Code 4CH1_2C_2206_MS All the material in this publication is copyright © Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a) (i)	argon	ALLOW Ar	1
(ii)	nitrogen	ALLOW N ₂ /N	1
(iii)	hydrogen	ALLOW H ₂ /H	1
(b)	climate change/global warming /oceans becoming more acidic	ALLOW greenhouse effect	1
		ALLOW effects of global warming e.g. melting of polar ice caps/flooding/wild fires	
		IGNORE acid rain	
		REJECT references to ozone layer	
(c)	M1 bubble/pass/add the gas/carbon dioxide into limewater		2
	M2 (limewater) turns cloudy/milky	ALLOW white precipitate	
		M2 dep on mention of limewater	
		REJECT addition of extra reagents for both marks	
			Total 6

Quest numl		Answer	Notes	Marks
2 (a)	(i)	M1 (X) measuring cylinder		2
		M2 (Y) pipette	ALLOW graduated pipette	
	(ii)	(volume measurement with Y is) more precise ORA	ALLOW (volume measurement with Y is) more accurate ORA	1
			ALLOW (Y gives) a (more) exact volume /exactly 25 cm ³	
(b)	(i)	yellow		1
	(ii)	there is no clear end point/ colour change is gradual (at the end point)/no sharp colour change OWTTE	ALLOW it has a range of colours	1
(c)			correct answer with or without working scores 3	3
		M1 moles of $HNO_3 = \frac{21.5 \times 0.6(00)}{1000}$ OR 0.0129		
		M2 moles of Ba(OH) ₂ = 0.0129 ÷ 2 OR 0.00645	ALLOW ecf on M2	
		M3 conc. of Ba(OH) ₂ = <u>0.00645 × 1000</u> = 0.258 (mol/dm ³) 25	ACCEPT alternative methods	
			0.516 scores 2	
			1.032 scores 2	
			ALLOW 2 sig figs correctly rounded throughout	
			Penalise rounding to 1 sig fig once only	
(d)		barium sulfate is insoluble /does not dissolve /forms a precipitate		1
				Total 9

Question number	Answer	Notes	Marks
3 (a)	C fluorine		1
	A is incorrect as astatine is black		
	B is incorrect as bromine is brown		
	D is incorrect as iodine is dark grey		
(b)	A astatine		1
	B is incorrect as bromine is a liquid		
	C is incorrect as chlorine is a gas		
	D is incorrect as fluorine is a gas		
(C)	An explanation that links the following four points		4
	M1 fluorine is more reactive than chlorine ORA	ALLOW reactivity	
		decreases down the	
		group ORA	
	M2 the outer shell is closer to the nucleus in	ALLOW a fluorine atom is	
	fluorine / fluorine has fewer shells / fluorine has a	smaller than a chlorine	
	smaller atomic radius ORA	atom ORA	
	M3 there is a stronger attraction to the nucleus for	ALLOW there is less	
	an electron in fluorine ORA	shielding in fluorine ORA	
	M4 so fluorine accepts an electron more readily ORA		
(d) (i)	$2Li + Cl_2 \rightarrow 2LiCl$	ALLOW multiples or	1
		fractions	
		IGNORE state symbols even if incorrect	
		ACCEPT 2Li*Cl*	
		REJECT any charges on Li or Cl ₂	

(ii)	A description that refers to the following five points		5	
	Test for lithium ions	ACCEPT description of		
	M1 flame test	ACCEPT description of flame test		
	M2 red (flame)	ALLOW crimson/scarlet		
		REJECT brick red/orange red		
		M2 dep on M1		
	Test for chloride ions			
	M3 add nitric acid	REJECT incorrect acid e.g. HCl or H ₂ SO ₄ for M3 only		
	M4 add silver nitrate (solution)	ALLOW acidified silver nitrate for M3 and M4		
	M5 white precipitate	M5 dep on addition of silver nitrate		
			Total 12]

right/white light OR bright/white flame white powder/solid/ash scription that refers to the following two points magnesium/Mg loses two electrons/becomes 2.8 xygen/O gains two electrons/becomes 2.8 mesium is more reactive/higher in the reactivity s (than carbon)/magnesium is a better reducing t (than carbon) ORA xplanation that links the following four points magnesium) has delocalised electrons	ALLOW white smoke ALLOW grey powder /solid/ash REJECT white precipitate ACCEPT magnesium gives two electrons to oxygen for M1 and M2 Both marks can be scored from diagrams showing correct electronic configurations of the ions. ALLOW carbon cannot displace magnesium	2
scription that refers to the following two points magnesium/Mg loses two electrons/becomes 2.8 xygen/O gains two electrons/becomes 2.8 mesium is more reactive/higher in the reactivity s (than carbon)/magnesium is a better reducing t (than carbon) ORA	ALLOW grey powder /solid/ash REJECT white precipitate ACCEPT magnesium gives two electrons to oxygen for M1 and M2 Both marks can be scored from diagrams showing correct electronic configurations of the ions. ALLOW carbon cannot	1
hagnesium/Mg loses two electrons/becomes 2.8 xygen/O gains two electrons/becomes 2.8 hesium is more reactive/higher in the reactivity s (than carbon)/magnesium is a better reducing t (than carbon) ORA xplanation that links the following four points	 /solid/ash REJECT white precipitate ACCEPT magnesium gives two electrons to oxygen for M1 and M2 Both marks can be scored from diagrams showing correct electronic configurations of the ions. ALLOW carbon cannot 	1
hagnesium/Mg loses two electrons/becomes 2.8 xygen/O gains two electrons/becomes 2.8 hesium is more reactive/higher in the reactivity s (than carbon)/magnesium is a better reducing t (than carbon) ORA xplanation that links the following four points	ACCEPT magnesium gives two electrons to oxygen for M1 and M2 Both marks can be scored from diagrams showing correct electronic configurations of the ions. ALLOW carbon cannot	1
xygen/O gains two electrons/becomes 2.8 nesium is more reactive/higher in the reactivity s (than carbon)/magnesium is a better reducing t (than carbon) ORA xplanation that links the following four points	two electrons to oxygen for M1 and M2 Both marks can be scored from diagrams showing correct electronic configurations of the ions. ALLOW carbon cannot	
nesium is more reactive/higher in the reactivity s (than carbon)/magnesium is a better reducing t (than carbon) ORA xplanation that links the following four points	two electrons to oxygen for M1 and M2 Both marks can be scored from diagrams showing correct electronic configurations of the ions. ALLOW carbon cannot	
s (than carbon)/magnesium is a better reducing t (than carbon) ORA xplanation that links the following four points	from diagrams showing correct electronic configurations of the ions. ALLOW carbon cannot	
s (than carbon)/magnesium is a better reducing t (than carbon) ORA xplanation that links the following four points	ALLOW carbon cannot	
		4
magnesium) has delocalised electrons		
magnesiam, has accocatised electrons		
lectrons can move	REJECT reference to ions or atoms moving for M2	
magnesium chloride) can only conduct when en/in solution OR (magnesium chloride) cannot uct when solid	ions are free to move when (magnesium chloride) is molten/in	
ons are free to move	solution scores M3 and M4 REJECT reference to electrons moving for M4	
nesium ions/ Mg ²⁺ gains electrons	ALLOW electrons are gained	1
	REJECT magnesium /Mg gains electrons	
	REJECT reference to loss or gain of oxygen	
\rightarrow Cl ₂ + 2e ⁽⁻⁾	ALLOW $2Cl^{-} - 2e^{(-)} \rightarrow Cl_2$	1
	ALLOW multiples or fractions	
	IGNORE state symbols	
	hesium ions/ Mg ²⁺ gains electrons $\rightarrow Cl_2 + 2e^{(-)}$	electrons moving for M4 hesium ions/ Mg^{2+} gains electrons ALLOW electrons are gained REJECT magnesium /Mg gains electrons REJECT reference to loss or gain of oxygen $ALLOW 2Cl^ 2e^{(-)} \rightarrow Cl_2$ ALLOW multiples or

Question number	Answer	Notes	Marks
5 (a) (i)	M1 <u>40.0</u> <u>6.7</u> <u>53.3</u> 12 1 16	0 marks for division by atomic numbers or upside-down calculation	2
	M2 3.33 6.7 3.33 AND	ALLOW any number of sig figs except 1	
	1 2 1	ACCEPT alternative methods	
(ii)	CH ₃ COOH	ACCEPT HCOOCH ₃	1
	OR	OR	
	H C H-Ċ-Ć		
(b) (i)	$\label{eq:2HCOOH} 2\text{HCOOH} \ + \ \text{Na}_2\text{CO}_3 \ \rightarrow \ \text{2HCOONa} \ + \ \text{CO}_2 \ \ + \ \text{H}_2\text{O}$		2
	M1 CO ₂ + H ₂ O	IGNORE numbers in front of CO ₂ and/or H ₂ O if only M1 scored	
	M2 HCOONa and equation correctly balanced	REJECT NaCOOH	
		ALLOW NaHCOO	
(ii)	bubbles/ fizzing/ effervescence	IGNORE gas given off	1
		ALLOW sodium carbonate disappears/dissolves	
(c) (i)	propyl methanoate	spelling must be correct	1
		ALLOW propyl formate	
(ii)	reversible reaction	ALLOW reaction which goes both ways	1
		IGNORE equilibrium	

(iii)	forward and backward reactions occur at the sam rate OWTTE	ne	1
	OR		
	concentrations of reactants and products remain constant/stay the same/do not change	ALLOW amounts/moles/ratios of reactants and products remain constant	
		REJECT concentrations of reactants and products are equal/the same	
(d) (i)	condensation (polymerisation)		1
(ii)			2
	M1 M2	ALLOW HOOCCH ₂ CH ₂ COOH for M1	
	HO-C-CH ₂ CH ₂ -C-OH HO-CH ₂ CH ₂ -OH	ALLOW HOCH ₂ CH ₂ OH for M2	
		REJECT OH-C once only	
			Total 12

Question number	Answer	Notes	Marks
6 (a)		correct answer with or without working scores 4	4
	M1 (moles of TiO ₂ =) $\frac{20 \times 10^6}{80}$ OR 2.5×10^5 (mol)	ACCEPT 250 000 (mol)	
	M2 (moles of $Cl_2 =$) 2.5 × 10 ⁵ x 2 OR 5.0 × 10 ⁵ (mol)	ACCEPT 500 000 (mol)	
	M3 (vol of Cl_2 =) $5.0 \times 10^5 \times 24$ OR 12 000 000 (dm ³)		
	M4 1.2 × 10 ⁷ (dm ³)	ALLOW ecf on M2 and M3	
		6 x 10 ⁶ scores 3	
		3 x 10 ⁶ scores 3	
		6 000 000 scores 2	
		3 000 000 scores 2	
		2.083 x 10 ⁴ scores 3	
(b)	An explanation that links the following two points		2
	M1 argon is unreactive/inert		
	M2 (so argon) will not react with/oxidise the magnesium	ALLOW argon will not react with/oxidise titanium	
	OR oxygen (in air) will react with/oxidise the magnesium	OR oxygen (in air) will react with/oxidise the titanium	
(c)	An explanation that links the following three points	all marks can be awarded from labelled diagrams	3
	M1 in pure titanium all atoms are the same size OR layers/atoms can slide over each other (making it soft /malleable)	ALLOW cations/ions /particles in place of atoms throughout	
	M2 the alloy has atoms of different sizes	REJECT mention of molecules once only	
	M3 (which disrupts the structure so that) atoms/layers do not/harder to slide over each other (making it stronger) OWTTE	molecules once only	
			Total 9

Question number	Answer	Notes	Marks
(a)	carbon	ALLOW soot	1
		ALLOW copper(II) oxide /copper oxide/CuO	
		REJECT copper(I) oxide	
(b)	M1 (amount of ethanol) = 0.92 ÷ 46 OR 0.02(0) (mol)		2
	M2 (-)18.2 ÷ 0.02(0) = (-)910 (kJ/mol)	ALLOW alternative methods	
(c)	Any 2 from		2
	M1 heat (energy)/ thermal energy was lost (to the surroundings/apparatus)		
	M2 incomplete combustion (of ethanol)		
	M3 the ethanol was impure/ethanol evaporates		
(d) (i)		correct answer with or without working scores 4	4
	M1 Σ bonds broken = 4 x C–H + 2 x 498	ALLOW 2 x 498 OR 996 seen	
	M2 Σ bonds formed = 2 x 805 + 4 x 463 OR 3462		
	M3 4 x C–H + 996 – 3462 = – 890		
	M4 C-H = 1576 ÷ 4 = 394 (kJ/mol)	ALLOW ecf throughout	
		839 without working scores 3	
		616.5/617 without working scores 3	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom