

Cambridge IGCSE[™]

CANDIDATE NAME		
CENTRE NUMBER	CANDIDATE NUMBER	
CAMBRIDGE	INTERNATIONAL MATHEMATICS	0607/33
Paper 3 (Core)		May/June 2021
		1 hour 45 minutes
You must answe	er on the question paper.	
You will need:	Geometrical instruments	

You will need: Geometrical instruments

INSTRUCTIONS

- Answer all questions. •
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. •
- Write your name, centre number and candidate number in the boxes at the top of the page. •
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid. •
- Do not write on any bar codes.
- You should use a graphic display calculator where appropriate.
- You may use tracing paper. •
- You must show all necessary working clearly and you will be given marks for correct methods, including sketches, even if your answer is incorrect.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in • degrees, unless a different level of accuracy is specified in the question.
- For π , use your calculator value. •

INFORMATION

- The total mark for this paper is 96.
- The number of marks for each question or part question is shown in brackets [].

DC (CE/CGW) 199829/2

© UCLES 2021

Formula List

Area, A , of triangle, base b , height h .	$A = \frac{1}{2}bh$
Area, A , of circle, radius r .	$A = \pi r^2$
Circumference, C, of circle, radius r.	$C = 2\pi r$
Curved surface area, A , of cylinder of radius r , height h .	$A=2\pi rh$
Curved surface area, A , of cone of radius r , sloping edge l .	$A = \pi r l$
Curved surface area, A , of sphere of radius r .	$A = 4\pi r^2$
Volume, V , of prism, cross-sectional area A , length l .	V = Al
Volume, V , of pyramid, base area A , height h .	$V = \frac{1}{3}Ah$
Volume, V , of cylinder of radius r , height h .	$V = \pi r^2 h$
Volume, V , of cone of radius r , height h .	$V = \frac{1}{3}\pi r^2 h$
Volume, V , of sphere of radius r .	$V = \frac{4}{3}\pi r^3$

© UCLES 2021

3

Answer **all** the questions.

1	(a)	(i)	Write in words 78 616.		
					[1]
		(ii)	Write 78616 correct to the nearest thousand.		
					[1]
		(iii)	Write 78616 correct to 3 significant figures.		
					[1]
	(b)	Wo	rk out.		
		(i)	$\frac{2.45 + 1.474}{4.25 - 3.53}$		
					[1]
		(ii)	∛729		
					[1]
		(iii)	$\sqrt{2.43^2 + 1.65^2}$ Give your answer correct to 2 decimal places.		
					[2]
	(c)	(i)	Write down all the factors of 12.		
		(ii)	Find the highest common factor (HCF) and the lowest	ommon multiple (LCM) of 12 and	18.

HCF	
LCM	[3]

2 Owen carried out a survey of the weather in 2020.

He randomly chose some days from each month and recorded the type of weather for each day. The results are shown in the table.

Type of weather	Tally	Frequency
Cloud	14ft II	
Rain	111 III	
Sun	111 111 111 III	
Snow	II	
Fog	ш	

- (a) Complete the frequency column of the table.
- (b) Work out the total number of days Owen chose in his survey.

......[1]

[1]

- (c) Write down the most common type of weather in Owen's survey.
- (d) On the grid, draw a bar chart to show the information in the table.

Type of weather

(e) One of these days is chosen at random.

Work out the probability that the type of weather on this day is Sun.

......[1]

(f) Use the information in the table to estimate how many days in one year (365 days) will have Rain.

.....[2]

(g) Owen makes a pie chart using the information in the table.

Work out the sector angle for Cloud.

3	(a)	These are	the	first fo	our t	terms	of	a seque	ence.
---	------------	-----------	-----	----------	-------	-------	----	---------	-------

			800	400	200	100	
	For th	is sequence, write	down				
	(i) tl	ne next two terms	,				
	(ii) tl	ne rule for continu	ing the sequ	ience.			[2]
							[1]
(b)	These	are the first six to	erms of a dif	ferent se	quence.		
			-5 -3	3 -1	1	3	5
	Find t	he <i>n</i> th term of this	s sequence.				
							[2]
(c)	The <i>n</i> t	th term of another	sequence is	6 <i>n</i> + 5			
	(i) V	Vork out the first	hree terms o	of this se	quence.		

(ii) Rearrange the formula P = 6n + 5 to make *n* the subject.

- 4 (a) A packet of breakfast cereal costs \$2.80.
 - (i) Work out the greatest number of these packets that can be bought with \$20.

......[2]

(ii) Work out how much of the \$20 is left.

\$.....[1]

(b) The breakfast cereal contains only grain, fruit and nuts. The ratio, by mass, is grain : fruit : nuts = 16:7:2.

Work out the mass of each ingredient in a box containing 500 g of cereal.

Grain g Fruit g Nuts g [3]

(c) A box of the cereal normally contains 500 g. In a special offer, the mass of cereal in a box is increased by 12%.

Work out the total mass of cereal in a special offer box.

..... g [2]

ABC is an isosceles triangle and ACD is a straight line.

(i) Find the value of x and the value of y.

<i>x</i> =	
y =	 [2]

(ii) Find the size of the reflex angle at *B*.

......[1]

(b)

Find the value of *z*.

6 An examination consists of two papers, Paper 1 and Paper 2. The scores for each of nine candidates are shown below.

Paper 1	75	73	68	60	60	55	47	33	15
Paper 2	29	34	26	31	25	19	20	17	6

(a) Complete the scatter diagram. The first five points have been plotted for you.

(b) What type of correlation is shown in the scatter diagram?

......[1]

(c) (i) Work out the mean of the Paper 1 scores and the mean of the Paper 2 scores.

[Turn over

7

(a) Simplify.

(b) Solve.

(c) Multiply out the brackets.

$$3x(2x^2-5x)$$

4x - 3 = 9

2x + 3y + 4x - y

(d) Write as a single fraction in its simplest form.

(i)
$$\frac{3y^2}{8} \div \frac{2y}{5}$$

......[2]

(ii) $\frac{4x}{7} + \frac{x}{3}$

11

(a) Work out the coordinates of the mid-point of line *AB*.

(.....) [2]

(b) Find the equation of line *AB*.

			[3]
(c)	(i)	On the grid, draw the line $y = 2$.	[1]
	(ii)	Write down the coordinates of the point where the line $y = 2$ crosses line <i>AB</i> .	
	(11)	write down the coordinates of the point where the line $y = 2$ crosses line AB.	

(.....) [1]

The diagram shows a rectangle with a triangular corner cut off.

(a) Work out the area of the shaded shape. Give the units of your answer.

9

(b) Use Pythagoras' Theorem to work out the value of y.

(c) Work out the perimeter of the shaded shape.

..... m [3]

(c) Find the x-coordinate of each point of intersection of $y = x^2 + 2x + 1$ and $y = 2^x$.

..... and [2]

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.