

Mark Scheme (Results)

Summer 2022

Pearson Edexcel International Advanced Level In Chemistry (WCH14) Paper 01: Rates, Equilibria and Further Organic Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022 Question paper log number P70967A Publications Code WCH14_01_2206_MS All the material in this publication is copyright © Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:

i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear

ii) select and use a form and style of writing appropriate to purpose and to complex subject matter

iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Section A

Question Number	Answer	Mark
1(a)	The only correct answer is B (two)	(1)
	A is not correct because 2-methylpropan-2-ol has a peak for the 3 CH_3 groups and one for the OH group making 2 in total	
	C is not correct because 2-methylpropan-2-ol has a peak for the 3 CH_3 groups and one for the OH group making 2 in total	
	D is not correct because 2-methylpropan-2-ol has a peak for the 3 CH_3 groups and one for the OH group making 2 in total	

Question Number	Answer	Mark
1(b)	The only correct answer is A (propanal)	(1)
	B is not correct because propane has 2 peaks in the ratio 3:1	
	<i>C</i> is not correct because propan-1-ol has 4 peaks in the ratio 3:2:2:1	
	D is not correct because propan-2-ol has 3 peaks in the ratio is 6:1:1	

Question Number	Answer	Mark
1(c)	The only correct answer is C (butanal)	(1)
	A is not correct because butanoic acid has a singlet due to the COOH	
	B is not correct because butanone has a singlet due to the CH_3 adjacent to the $C=O$	
	D is not correct because butan-1-ol has a singlet due to the OH	

Question Number	Answer	Mark
2	The only correct answer is B (CH ₃ CH ₂ CHO)	(1)
	A is not correct because there will not be a peak at m/z 29.0390	
	C is not correct because there will not be a molecular ion peak a m/z 58.0417	
	D is not correct because there will not be molecular ion peak at m/z 58.0417 nor a peak at m/z 29.0390	

Question Number	Answer	Mark
3	The only correct answer is D (octan-1-ol, octanal, octane,)	(1)
	A is not correct because octan-1-ol is the most polar so would have the shortest retention time	
	B is not correct because octan-1-ol is more polar than octanal and so would have a shorter retention time	
	<i>C</i> is not correct because octane is non-polar so would have the longest retention time	

Question Number	Answer	Mark
4	The only correct answer is C (0.75)	(1)
	A is not correct because the calculation has used the distance from the solvent front to the sample not the baseline	
	B is not correct because the calculation has used the length of the plate, not the distance the solvent travelled	
	D is not correct because the calculation has been inverted	

Question Number	Answer	Mark
5	The only correct answer is C (alkaline hydrolysis of an ester) A is not correct because this reaction will produce a carboxylic acid	(1)
	<i>B</i> is not correct because this reaction will produce a carboxylic acid	
	D is not correct because this reaction will produce a carboxylic acid	

Question Number	Answer	Mark
6	The only correct answer is C (3-methylpentan-3-ol)	(1)
	A is not correct because this is a primary alcohol and so can be formed by the reduction of an aldehyde	
	B is not correct because this is a secondary alcohol and so can be formed by the reduction of a ketone D is not correct because this is a secondary alcohol and so can be formed by the reduction of a ketone	
	D is not correct because this is a secondary alcohol and so can be formed by the reduction of a ketone	

Question Number	Answer	Mark
7	The only correct answer is B (4.17)	(1)
	A is not correct because this is the $-\log of$ the concentration	
	C is not correct because this is the $-\log of$ the K_a	
	D is not correct because this is the $-\log of$ the K_a multiplied by the concentration	

Question Number	Answer	Mark
8	The only correct answer is B (13.43) <i>A</i> is not correct because this is the $-\log [OH^-]$	(1)
	<i>C</i> is not correct because it does not produce 2 x OH	
	D is not correct because the $-\log [OH^-]$ has been added to pK_w	

Question Number	Answer	Mark
9(a)	The only correct answer is D (hydrochloric acid added to ammonia)	(1)
	A is not correct because it is a weak acid and strong base	
	B is not correct because it is a strong acid and strong base	
	<i>C</i> is not correct because it is a weak acid and weak base	

Question Number	Answer	Mark
9(b)	The only correct answer is C (methyl red)	(1)
	A is not correct because malachite green would change colour at about pH 1	
	B is not correct because methyl yellow would change colour at about pH 3.5	
	D is not correct because thymol blue would change colour at about pH 9	

Question Number	Answer	Mark
10(a)	The only correct answer is C (Graph 3) c	(1)
	 A is not correct because it is a rate v concentration graph for a second order reaction B is not correct because it is a concentration v time graph for a zero order reaction D is not correct because it is a concentration or time graph for a zero order reaction 	
	D is not correct because it is a rate v concentration graph for a first order reaction	

Question	Answer	Mark
Number 10(b)	The only correct answer is D (Graph 4)	(1)
	D	
	A is not correct because it is a graph of rate against concentration for a second order reaction	
	B is not correct because it is a graph of concentration against time for a zero order reaction	
	<i>C</i> is not correct because it is a graph of rate of reaction against concentration of the reactant for a zero order reaction	

Question Number	Answer	Mark
11(a)	The only correct answer is A (colorimetry)	(1)
	B is not correct because the solution would not go cloudy	
	<i>C</i> is not correct because there is no base to titrate against	
	D is not correct because starch is an indicator and would immediately turn blue-black	

Question Number	Answer	Mark
11(b)	The only correct answer is B (1.98)	
	A is not correct because the concentration of the acid has been increased three times	
	<i>C</i> is not correct because the concentration of the acid has been decreased six times	
	D is not correct because the pH has been multiplied by three	

Question Number	Answer	Mark
12	2 The only correct answer is A $(+38.8 \text{ kJ mol}^{-1})$	
	B is not correct because the units are incorrect	
	C is not correct because the gradient has been divided by R	
	D is not correct because the gradient has been divided by R and the units are incorrect	

Question Number	Answer	Mark
13	The only correct answer is D (decreasing the temperature would increase the equilibrium yield of sulfur trioxide)	(1)
	A is not correct because vanadium oxide is a heterogeneous catalyst	
	B is not correct because decreasing pressure would decrease the equilibrium yield of sulfur trioxide	
	C is not correct because increasing the surface area of the catalyst will affect the rate not the equilibrium yield of sulfur trioxide	

Question Number	Answer	Mark
14	The only correct answer is A $(CaO(s) < H_2O(l) < CO_2(g) < SO_2(g))$	
	B is not correct because $SO_2(g)$ has a greater standard molar entropy than $CO_2(g)$	
	C is not correct because $SO_2(g)$ has the greatest standard molar entropy	
	D is not correct because $SO_2(g)$ has the greatest standard molar entropy	

Question Number	Answer	Mark
15	The only correct answer is B (PS)	
	A is not correct because R is smaller than S	
	C is not correct because Q is larger than P and R is smaller than S	
	\boldsymbol{D} is not correct because Q is larger than P	

(Total for Section A = 20 Marks)

Section B

Question Number	Answer	Additional Guidance	Mark
16(a)(i)	$K_{p} = \frac{p^{2} N H_{3}}{p N_{2} p^{3} H_{2}}$	Allow round or no brackets Allow upper case Allow pp/PP Allow $p(NH_3)^2 p NH_3^2$ etc Ignore units even if incorrect Do not award square brackets	(1)

Question Number	Answer		Additional Guidance		ance	Mark
16(a)(ii)	• mole fraction of N ₂ (1)	Example of complete	d table		(3)	
	• mole fraction of H ₂	(1)	Substance	Mole fraction	Partial pressure/atm	
	• both partial pressures	(1)	N ₂	0.18	36	
			H ₂	0.54	108	
			NH ₃	0.28	56	
			TE for M3 on calcula	ated mole fractions r	nultiplied by 200	

Question Number	Answer Additional Guidance		Additional Guidance	Mark
16(a)(iii)	An answer that makes reference to the following points:		Example of calculation	(3)
	• correct use of K_p expression	(1)	$56^2 \div (108^3 \times 36)$	
	• correct answer and 1 or 2 SF	(1)	7 or $6.9 \times 10^{-5} / 0.00007$ or 0.000069 Allow 3SF $6.92 \times 10^{-5} / 0.0000692$ Do not award $7.0 \times 10^{-5} / 0.000070$	
	• correct units	(1)	atm ⁻²	
			Allow TE from (a)(i) and (a)(ii)	
			If mole fractions are used for the calculation max score 1 for the correct answer and 1-3 SF	
			Correct answer with or without working scores 3	

Question Number	Answer	Additional Guidance	Mark
16(a)(iv)	An answer that makes reference to the following points:	Allow reverse argument	(2)
	• the (forward) reaction is/ must be exothermic (1)		
	 (more ammonia shows that) the equilibrium has moved/shifted to the right OR 	Allow favours forward reaction/shifts to the product side	
	(more ammonia shows that) a new K_p is established which is larger (1)	Allow K_p increases/eqm constant increases	
		Ignore just 'more ammonia produced' or 'yield increases'	

Question Number	Answer	Additional Guidance	Mark
16(b)(i)	• $\mathrm{NH_4}^+(\mathrm{aq}) + \mathrm{Cl}^-(\mathrm{aq})$	Do not award NH4 ⁺ Cl ⁻ (aq) Do not award NH4Cl(aq)	(1)
		Do not award any other state symbols	

Question Number	Answer	Additional Guidance	Mark
16(b)(ii)	• $\Delta_{sol} H = \Delta_{hyd} H$ – Lattice Energy or $\Delta_{sol} H = -$ Lattice Energy + $\Delta_{hyd} H$	Allow LE for Lattice Energy Allow $\Delta_{sol} H = -$ Lattice Energy + hydration enthalpies Allow $\Delta_{sol} H = -$ Lattice Energy + hydration enthalpies	(1)
		Allow ΔH_{hyd} etc Ignore standard signs	

Question Number	Answer		Additional Guidance	Mark
16(b)(iii)	• enthalpy change of hydration of ammonium chloride	(1)	Example of calculation $-307 + (-378) = -685 \text{ (kJ mol}^{-1}\text{)}$ Allow (kJ mol ⁻)	(2)
	• enthalpy change of solution	(1)	 705 + (-685) = (+)20 (kJ mol⁻¹) Allow TE on arithmetical errors Do not award use of incorrect expression Correct answer with or without working scores 2 Units are not required but if wrong penalise only once. 	

Question Number	Answer		Additional Guidance	Mark
16(b)(iv)	An explanation that makes reference to three of the following points			(3)
	• M1 the bromide (ion) is larger than the chloride (ion)	(1)	Allow bromine ion larger than the chlorine ion	
	And any 2 of the following		Do not award larger atomic radius	
	• M2 hydration enthalpy of the bromide ion less exothermic/less negative (than the chloride)	(1)	Allow smaller/lower Allow hydration enthalpy of bromine would be less exothermic/less negative (than the chlorine)	
			Allow hydration enthalpy of ammonium bromide would be less exothermic/less negative (than ammonium chloride)	
	• M3 lattice energy of ammonium bromide would be less exothermic/less negative (than ammonium chloride)	(1)	Allow smaller/lower	
	• M4 the enthalpy of solutions depends on the values of both hydration and lattice energies (so the enthalpies of solution should be similar)	(1)	Accept because we don't know the magnitude of the reduction in hydration and lattice energies it is not possible to assess the overall effect	
			Allow reverse arguments for MP1, MP2 and MP3	
			Ignore any reference to reactivity, polarisation and charge density	

Question Number	Answer	Additional Guidance	Mark
16(c)			(1)
	• $NH_4^+ + H_2O \longrightarrow NH_3 + H_3O^+$	Accept $NH_4^+ \longrightarrow NH_3 + H^+$	
		Allow eqm sign	
		Ignore NH ₄ Cl \longrightarrow NH ₄ ⁺ +Cl ⁻	
		Ignore NH ₄ Cl + aq \longrightarrow NH ₄ ⁺ + Cl ⁻	
		Ignore state symbols even if incorrect	
		Do not award $NH_4Cl + aq \longrightarrow NH_3 + HCl$	
		Do not award $NH_4Cl \longrightarrow NH_3 + HCl$	
		Do not award NH ₄ Cl \longrightarrow NH ₃ + H ⁺ + Cl ⁻	
		Do not award $NH_4^+ + OH^- \rightarrow NH_3 + H_2O$	

(Total for Question 16 = 17 Marks)

Question Number	Answer	Additional Guidance	Mark
17(a)	An answer that makes reference to the following points:		(3)
	• A	Allow structural or skeletal formulae for max 2 marks	
		Ignore any names even if incorrect	
	• B	Ignore bond angles/lengths	
	н н н О н н-с-с-с-с-с-н (1) • С	Penalise missing Hs only once	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		

Question Number	Answer	Additional Guidance	Mark
17(b)(i)	• 2-hydroxybutanenitrile	Allow 2-hydroxy(l)buta(n)nitrile Allow 2-hydroxy(l)butane-1-nitrile Do not award 2-hydroxobutanenitrile Do not award 2-oxobutanenitrile Do not award cyanides or other non IUPAC names	(1)
		Ignore any extra hyphens, commas and spaces	

Question Number	Answer	Additional Guidance	Mark
17(b)(ii)	• one isomer rotates (the plane of monochromatic) plane-polarised light in one direction and the other in the opposite direction/ the isomers rotate (the plane of) plane-polarised light in opposite directions/clockwise and anticlockwise	Do not award bends Allow different directions Allow PPL for plane polarised light Allow the direction of rotation of plane polarised light Allow see which way the sample rotates PPL	(1)

Question Number	Answer		Additional Guidance	Mark
17(b)(iii)	An answer that makes reference to the following points:			(2)
	 propanal is planar around the CHO/reaction site/C=O/carbonyl 	(1)	Do not award just propanal is planar Do not award planar intermediate/carbocation Do not award any reference to nucleophilic substitution ($S_N 1/S_N 2$)	
	 CN^{-/} nucleophile can attack on either side/both sides/above and below (giving a racemic/equimolar/ 50/50 mixture) 	(1)		

Question Number	Answer	Additional Guidance	Mark
17(c)(i)	Image: Non-State Image: Non-State Image: Non-State Image: Non-State	Ignore displayed or structural formulae Ignore bond lengths and bond angles Allow	(1)

Question Number	Answer	Additional Guidance	Mark
17(c)(ii)			(1)
	 no carbon atom has 4 different groups or (central) carbon atom is bonded to two CH₃/same groups or no asymmetric/chiral carbon atom or the compound is superimposable on its mirror image or it does not have a chiral centre 	Ignore symmetrical Do not award 2 of the same molecules/compounds attached to the carbon atom Do not award racemic mixture	

Question Number	Answer	Additional Guidance	Mark
17(d)(i)			(1)
	• correct chemical shift and carbon environment	Chemical shift range Carbon environment	
		190-225 (ppm) C=O	
		OR	
		0-60 (ppm) C—C	
		Both range and carbon environment required. Allow the full range or a number/ smaller range within the range. Allow for carbon environment C-C=O and C-C=O C H Ignore any splitting patterns	

Question Number	Answer	Additional Guidance	Mark
17(d)(ii)			(1)
	• Propanal: 3/three		
	and		
	• Propanone: 2/two		

(Total for Question 17 = 11 Marks)

Number		Answer	Additional Guidance	
Question Number 18*	structured answer with linkages ar Marks are awarded for indicative of structured and shows lines of rease The following table shows how the content. Number of indicative marking points seen in Answer 6 5-4 3-2 1 0	content and for how the answer is	 should be applied. The mark for indicative content should be added to the mark for lines of reasoning. For example, a response with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there were no linkages between the points, then the same indicative marking points would yield an overall score of 3 marks (3 marks for linkages). 	
	and fines of reasoning.			

Indicative content	
Similarities IP1 the Cl is lost in all reactions	Allow all produce HCl IP1 can be scored by the equations in IP4, IP5 and IP6
IP2 water, ethanol and ammonia all contain a lone pair that attacks the delta+ carbon atom in ethanoyl chloride	Allow water, ethanol and ammonia are all nucleophiles/ they are all nucleophiles/all reactions are nucleophilic
IP3 all reactions are very vigorous/violent	Allow all reactions take place at room temperature/ are very fast/spontaneous/ do not require catalysts
Differences IP4 water: forms ethanoic acid/ CH ₃ COOH (CH ₃ COCl + H ₂ O) \longrightarrow CH ₃ COOH (+ HCl) IP5 ethanol: forms ethyl ethanoate/ CH ₃ COOCH ₂ CH ₃ (CH ₃ COCl + CH ₃ CH ₂ OH) \longrightarrow CH ₃ COOCH ₂ CH ₃ (+ HCl) IP6 Ammonia: forms ethanamide/ CH ₃ CONH ₂ (CH ₃ COCl + 2NH ₃) \longrightarrow CH ₃ CONH ₂ (+ NH ₄ Cl)	 If name or formula are given, they must both be correct but only penalise once in IP4, IP5 and IP6. Penalise minor slips e.g. missing H, pentavalent C once only in IP4, IP5 and IP6. Note the mark is for the organic product not the equation. Allow CH₃COCl + NH₃ → CH₃CONH₂ + HCl Ignore nature of the reactions e.g. esterification/ hydrolysis/elimination/addition/substitution/condensation. Polymerisation is incorrect chemistry so will penalise a reasoning mark.

(Total for Question 18 = 6 Marks)

Question	Answer	Additional Guidance	Mark
Number 19(a)(i)	 An answer that makes reference to the following point: HCOOH + KOH → HCOOK + H₂O 	Allow HCOO ⁻ K ⁺ /HCOO ⁻ + K ⁺ Allow HCOOH + OH ⁻ \longrightarrow HCOO ⁻ + H ₂ O Allow Na in place of K Ignore state symbols even if incorrect Do not award HCOO – K	(1)

Question Number	Answer		Additional Guidance	Mark
19(a)(ii)			Example of calculation	(2)
	• correct volume read off the graph	(1)	22 (cm ³) This may be noted on the graph	
	• correct concentration	(1)	$25.0 \times 0.15/22.0 = 0.17045 \pmod{\text{dm}^{-3}}$	
			Ignore SF except 1SF	
			Allow TE on wrong volume	
			Correct answer scores 2	

Question Number	Answer		Additional Guidance	Mark
19(a)(iii)	An answer that makes reference to the following points:			(3)
	• volume at half-neutralisation	(1)	11 cm ³ (Allow TE from volume in (a)(ii))	
	• pH value at half-neutralisation	(1)	$pH = 3.8 \ (\pm \ 0.1)$	
	• calculation of K_a	(1)	(Hydrogen ion concentration = $10^{-3.8}$) $K_a = 1.5849 \times 10^{-4} / 0.00015849 \text{ (mol dm}^{-3})$ Correct answer with no working scores 3	
			Allow TE throughout Ignore SF	
			If 3.9 used (Hydrogen ion concentration = $10^{-3.9}$) $K_a = 1.2589 \times 10^{-4} / 0.00012589 \text{ (mol dm}^{-3})$	
			If 3.7 used (Hydrogen ion concentration = $10^{-3.7}$) $K_a = 1.9953 \times 10^{-4} / 0.00019953$ (mol dm ⁻³)	
			Allow TE from wrong pH	

Alternative method 1		
• pH at half-neutralisation	(1)	3.8 (± 0.1)
• p K_a value	(1)	3.8 (± 0.1)
• calculation of K_a	(1)	$K_a = 10^{-3.8}$ = 1.5849 × 10 ⁻⁴ / 0.00015849 (mol dm ⁻³) Correct answer with no working scores 3
		If 3.9 used Hydrogen ion concentration = $10^{-3.9}$ = 1.2589 × 10 ⁻⁴ / 0.00012589 (mol dm ⁻³) = K_a
		If 3.7 used Hydrogen ion concentration = $10^{-3.7}$ = 1.9953 × 10^{-4} / 0.00019953 (mol dm ⁻³) = K_a
		Allow TE from wrong pH for M2 and M3

Alternative method 2 (using pH of the methanoic acid at the start)			
• pH at the start	(1)	2.3 Allow 2.0-2.5	
• convert pH into H ⁺ concentration	(1)	Hydrogen ion concentration = $10^{-2.3}$ = 5.0119 × 10 ⁻³ / 0.0050119 (mol dm ⁻³)	
• calculation of K_a	(1)	$K_{\rm a} = (5.0119 \times 10^{-3})^2 = 1.6746 \times 10^{-4} / 0.00016746 \text{ (mol dm}^{-3})$ 0.15 Correct answer with no working scores 3	
2.0 gives a value of $6.667 \times 10^{-4} \pmod{4m^{-3}}$ 2.1 gives a value of $4.206 \times 10^{-4} \pmod{4m^{-3}}$ 2.2 gives a value of $2.654 \times 10^{-4} \pmod{4m^{-3}}$ 2.3 gives a value of $1.674 \times 10^{-4} \pmod{4m^{-3}}$ 2.4 gives a value of $1.057 \times 10^{-4} \pmod{4m^{-3}}$ 2.5 gives a value of $3.162 \times 10^{-3} \pmod{4m^{-3}}$		Allow TE from wrong pH (i.e. not in the range of 2.0-2.5) Ignore SF	
2.5 gives a value of $3.162 \times 10^{-5} \text{ (mol dm}^{-5}\text{)}$			

Question Number	Answer	Additional Guidance	Mark
19(b)	An answer that makes reference to the following points:	Example of calculation $[H^+] = K_a \times \underline{[HA]}_{[A^-]} OR \underline{[H^+]}_{K_a} = \underline{[HA]}_{[A^-]}$	(2)
	• calculation of [H ⁺] (1	$2.5119 \times 10^{-5} / 0.000025119$	
	• correct ratio (1	$[HA] = \frac{2.5118864 \times 10^{-5}}{1.3 \times 10^{-5}} = 1.9322:1$	
		Correct answer with no working scores 2	
		Allow just 1.9322 Allow rounding to 2:1	
		Ignore SF	
		Reciprocal ratio correctly identified 0.5175:1 scores 2 Correct answer with no working scores 2	
		Allow Henderson-Hasselbach equation	
		$pH = pKa - \log [HA] $ $[A^-]$	
		4.6 = $4.8861 - \log [HA] = [A^-]$ (1) [HA] = $1.9322:1$ (1) [A^-] Allow just 1.9322 Ignore SF	
		Reciprocal ratio correctly identified 0.5175:1 scores 2	

(Total for Question 19 = 8 Marks)

Question Number	Answer	Additional Guidance	Mark
20(a)(i)	 An answer that makes reference to two of the following points: 2-bromobutane: first order as doubling the concentration (in experiments 1 and 2 where OH⁻ is constant) the rate doubles (1 	Two correct orders with no or incorrect reasoning scores 1 Note the reasoning can be shown on the table	(2)
	 hydroxide ions: zero order as doubling the concentration (in experiments 1 and 3 where 2-bromobutane is constant) the rate does not change OR 		
	hydroxide ions: zero order as doubling the concentration (in experiments 2 and 3) where the concentration of 2-bromobutane is halved the rate halves.)	

Question Number	Answer	Additional Guidance	Mark
20(a)(ii)	• rate / $\mathbf{r} = k [C_4 H_9 B \mathbf{r}]$	TE on (i) Allow displayed or structural formulae Allow rate = $k [C_4H_9Br]^1[OH^-]^0$ Allow upper case K Allow reactants in any order Do not award round brackets	(1)

Question Number	Answer		Additional Guidance	Mark
20(a)(iii)	An answer that makes reference to the following points:		Allow the calculation from any experiment Example of calculation from experiment 1	(2)
	• correct calculation	(1)	$1.01 \times 10^{-3}/0.100 = 0.0101/1.01 \times 10^{-2}$ TE on (ii) Ignore SF	
	• correct units	(1)	s ⁻¹ Allow s ⁻	
			TE on (ii)	

Question Number	Answer		Additional Guidance	Mark
20(b)	 An answer that makes reference to the following points: M1 dipole on C-Br and curly arrow from bond to Br M2 correct intermediate and Br⁻ M3 curly arrow going from the lone pair on OH⁻ to the C⁺ 	(1) (1) (1)	If mechanism is inconsistent with rate equation in (a)(ii) then 2 max (for fully correct mechanism) Allow skeletal formula Ignore final product	(3)
	$ \begin{array}{ccccccccc} H & H & H & H & H & H & H & H \\ H - C - C - C - C - C - H & \rightarrow & H - C - C - C - C - H & + & B_{c} - \\ H & H & H & H & H \\ H & C - C - C - C - C - H & & H \\ \end{array} $			

Section C

Question Number	Answer		Additional Guidance	Mark
21(a)(i)			Example of calculation	(2)
	• correct use of enthalpy data	(1)	$-(-824.2) + (3 \times -110.5)$	
	• correct enthalpy change	(1)	$= (+)492.7 (kJ mol^{-1})$	
			Correct answer with or without working scores 2 The following score 1 for a single error: (+) 713.7 (kJ mol ⁻¹) not x3 -492.7 (kJ mol ⁻¹) signs reversed Allow 3SF Penalise wrong units once only in (a)(i) and (ii)	

Question Number	Answer		Additional Guidance	Mark
21(a)(ii)			Example of calculation	(3)
	• $\sum S$ products	(1)	$S = \text{ products } (2 \ge 27.3) + (3 \ge 197.6) = 647.4 \text{ (J } \text{K}^{-1} \text{ mol}^{-1})$	
	• $\sum S$ reactants	(1)	$S = \text{ reactants } 87.4 + (3 \text{ x } 5.7) = 104.5 (\text{J } \text{K}^{-1} \text{ mol}^{-1})$	
	• $\Delta S_{\text{system}} = \sum S \text{ products} - \sum S \text{ reactants}$	(1)	$\Delta S_{\text{system}} = 647.4 - 104.5 = (+)542.9 \text{ (J K}^{-1} \text{ mol}^{-1}\text{)}$	
			Correct answer with no working scores 3	
			Allow TE for M3	

Question Number	Answer		Additional Guidance	Mark
21(a)(iii)			Example of calculation	(3)
	• use of $\Delta S_{\text{surroundings}} = -\underline{\Delta H}{T}$	(1)	$\Delta S_{\rm surroundings} = - (+492.7) \times 1000/T$	
	• at equilibrium $\Delta S_{\text{total}} = 0 = \Delta S_{\text{surroundings}} + \Delta S_{\text{system}}$	(1)	$0 = -492.7 \ge 1000/T + 542.9$	
	• calculation of temperature	(1)	≥ 907.53(K)	
			0.90753 scores 2 (not x 1000)	
			Ignore SF TE on (a)(i) and (a)(ii)	
			Correct answer based on ai and aii without working scores 3	
			Allow use of $\Delta G = \Delta H - T \Delta S_{\text{system}}$	

Question Number	Answer		Additional Guidance	Mark
21(b)(i)	An answer that makes reference to the following points:			(2)
	• $\Delta S_{\text{surroundings}}$ and ΔS_{system} are positive	(1)	Allow ΔH is negative/reaction exothermic and ΔS_{system} is positive	
	• so ΔS_{total} will always be positive (so reaction will be feasible)	(1)	M2 dependent on M1	
	OR Using $\Delta G = \Delta H - T \Delta S_{\text{system}}$			
	• Allow ΔH is negative and ΔS_{system} is positive	(1)		
	• so ΔG will always be negative (so reaction will be feasible)	(1)	M2 dependent on M1	

Question	Answer		Additional Guidance	Mark
Number				
21(b)(ii)	An answer that makes reference to the following points:			(3)
	• at a higher temperature $\Delta S_{\text{surroundings}}$ will decrease	(1)	Ignore reference to $\Delta S_{\text{total}} = \text{Rln}k$	
	• ΔS_{system} does not change (significantly)	(1)		
	• so ΔS_{total} will decrease/become less positive	(1)		

Question Number	Answer		Additional Guidance	Mark
21(c)(ii)			Example of calculation	(2)
	• correct expression	(1)	-759 - 416 - 272 + 3920 - 798 + 141 - 249	
	• correct calculation	(1)	= (+)1567 (kJ mol ^{-1}) Allow 3SF	
			Correct answer with or without working scores 2 marks	
			Allow 1 mark for one mistake	

Question Number	Answer	Additional Guidance	Mark
21(c)(iii)	• the electron is being added to a negative ion (1)	This can be shown by an equation	(2)
	• and so there is repulsion (so energy is required) (1)	Allow repulsion between the electrons	

(Total for Question 21 = 20 Marks)

(Total for Section C = 20 Marks)

TOTAL FOR PAPER = 90 MARKS

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom