

Mark Scheme (Results)

Summer 2019

Pearson Edexcel IAL Mathematics (WMA12)

Pure Mathematics

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide

a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are

in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your

students at: <u>www.pearson.com/uk</u>

Summer 2019 Publications Code WMA12_01_1906_MS All the material in this publication is copyright © Pearson Education Ltd 2019

- 1. The total number of marks for the paper is 75.
- 2. The Pearson Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ or ft will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper or ag- answer given
- C or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected. If you are using the annotation facility on ePEN, indicate this action by 'MR' in the body of the script.

- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. Marks for each question are scored by clicking in the marking grids that appear below each student response on ePEN. The maximum mark allocation for each question/part question(item) is set out in the marking grid and you should allocate a score of '0' or '1' for each mark, or "trait", as shown:

	0	1
aM		•
aA	•	
bM1		•
bA1	•	
bB	•	
bM2		•
bA2		•

9. Be careful when scoring a response that is either all correct or all incorrect. It is very easy to click down the '0' column when it was meant to be '1' and all correct.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^{2} + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = ...$
 $(ax^{2} + bx + c) = (mx + p)(nx + q)$, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use <u>correct</u> formula (with values for *a*, *b* and *c*).

3. <u>Completing the square</u>

Solving $x^2 + bx + c = 0$: $(x \pm \frac{b}{2})^2 \pm q \pm c$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

Method mark for quoting a correct formula and attempting to use it, even if there are small mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these <u>may</u> not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does <u>not</u> cover this, please contact your team leader for advice

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question Number	Scheme	Marks
1.(a)	(i) $a_2 = 1$	B1
	(ii) $a_{107} = 3$	B1 (2)
(b)	$\sum_{n=1}^{200} (2a_n - 1) = 5 + 1 + 5 + 1 + \dots + 5 + 1 = 100 \times (5 + 1)$	M1
	n=1 = 600	A1 (2)
		(4 marks)
	Notes	
(a) (i) B1 a_2	=1 Accept the sight of 1. Ignore incorrect working	
(a)(ii) B1 a_{10}	$_{7}$ = 3 Accept sight of just 3. Ignore incorrect working	
If	there are lots of 1's and 3's without reference to any suffices they need to choo	se 3.
Lo	ablishes an attempt to find the sum of a series with two distinct terms. ok for $100 \times a + 100 \times b$ or $200 \times a + 200 \times b$ where <i>a</i> and <i>b</i> are allowable term amples of allowable terms are	15.
	a,b = 1,5 (which are correct)	
_	a,b = 1,3 (which are the values for (a))	
	$a,b=3,7$ (which is using $2a_n+1$)	
	a,b = 0.5 (which is a slip on the first value)	
Ме	thods using AP (and GP) formulae are common and score 0 marks.	
A1 600 600).) should be awarded both marks as long as no incorrect working is seen	

Question Number	Scheme	Marks
2. (a)	Attempts $(x \pm 2)^2 + (y \pm 5)^2 \dots = 0$	M1
	(i) Centre $(-2,5)$	A1
	(ii) Radius $\sqrt{50}$ or $5\sqrt{2}$	B1
		(3)
(b)	Gradient of radius = $\frac{(5)-4}{(-2)-5} = -\frac{1}{7}$ which needs to be in simplest form	B1ft
	Uses $m_2 = -\frac{1}{m_1}$ to find gradient of tangent	M1
	Equation of tangent $y-4 = "7"(x-5) \Rightarrow y = 7x-31$	M1 A1
		(4) (7 marks)
	Notes	
	te that the epen set up here is M1 M1 B1	
	tempts to complete the square on both terms or states the centre as $(\pm 2, \pm 5)$	
	or completing the square look for $(x \pm 2)^2 + (y \pm 5)^2 \dots = \dots$	
	entre $(-2,5)$ Allow $x = -2, y = 5$ This alone can score both marks even follow	
	es eg $(x+2)^2 (y-5)^2 =$ where could be , for example a minus sign or	blank
	dius $\sqrt{50}$ or $5\sqrt{2}$ You may isw after a correct answer.	
If a candid $(\pm 2, \pm 5)$	date attempts to use $x^2 + y^2 + 2fx + 2gy + c = 0$ then M1 may be awarded for	a centre of
	ote that the epen set up here is M1 M1 M1 A1	
	prrect answer for the gradient of the line joining $P(5,4)$ to their centre.	
Yc	bu may ft on their centre but the value must be fully simplified.	
M1 Av	varded for using $m_2 = -\frac{1}{m_1}$ to find gradient of tangent.	
Do	be aware that some good candidates may do the first two marks at once so yok at what value they are using for the gradient of the tangent.	you may need to
M1 For	r an attempt to find the equation of the tangent using $P(5,4)$ and a changed g	gradient. Condone
If t	acketing slips only. the candidate uses the form $y = mx + c$ they must use x and y the correct way	around and
-	beceed as far as $c =$ = $7x - 31$ stated. It must be written in this form.	
	cannot be awarded from $y = mx + c$ by just stating $c = -31$)	
Attempts a	at (b) using differentiation.	
	+ y^{2} + 4x - 10y - 21 = 0 → 2x + 2y $\frac{dy}{dx}$ + 4 - 10 $\frac{dy}{dx}$ = 0.	
	bstitutes $P(5,4)$ into an expression of the form $ax + by \frac{dy}{dx} + c + d \frac{dy}{dx} = 0$ AN	D finds the
val	lue of $\frac{dy}{dx} = (7)$. The values of a, b, c and d must be non-zero.	

M1	Uses $m = \frac{dy}{dx}\Big _{x=5}$ with $P(5,4)$ to find equation of tangent
A1	y = 7x - 31

Question Number	Scheme	Marks
3. (i)	$(x-4)^2 \ge 2x-9 \Longrightarrow x^2 - 10x + 25 \dots 0$	M1
	$\Rightarrow (x-5)^2 \dots 0$	A1
	Explains that "square numbers are greater than or equal to zero" hence (as	
	$x \in \mathbb{R}$), $\Rightarrow (x-4)^2 \ge 2x-9$ *	A1*
		(3)
(ii)	Shows that it is not true for a value of <i>n</i> Eg. When $n=3$, $2^n+1=8+1=9 \times \text{Not prime}$	B1
	Lg. when $n = 3$, $2 + 1 = 8 + 1 = 9 \approx 100$ prime	(1)
		(4 marks)
	Notes	
· / I	proof starting with the given statement	
M1 Att	empts to expand $(x-4)^2$ and work from form $(x-4)^2 \dots 2x-9$ to form a 3TQ	on one side of
-	nation or an inequality	
	hieves both $x^2 - 10x + 25$ and $(x-5)^2$. Allow $(x-5)^2$ written as ((x-5)(x-5)
	a correct proof. Eg	
	numbers are greater than or equal to zero", hence (as $x \in \mathbb{R}$), $(x-5)^2 \ge 0$	
\Rightarrow	$(x-4)^2 \geqslant 2x-9$	
numbers Ar the	is requires (1) Correct algebra throughout, (2) a correct explanation concerning and (3) a reference back to the original statement aswers via $b^2 - 4ac$ are unlikely to be correct. Whilst it is true that there is only refore it touches the x-axis, it does not show that it is always positive. The exp olve a sketch of $y = (x-5)^2$ but it must be accurate with a minimum on the +	ly one root and blanation could
	The statement alluding to why this shows $(x-5)^2 \ge 0$	
	es via odd and even numbers will usually not score anything. They would nee	d to proceed
using the n	nain scheme via $(2m-4)^2 \ge 4m-9$ and $(2m-1-4)^2 \ge 2(2m-1)-9$	
Alt to (i) v	via contradiction	
Pre	oof by contradiction is acceptable and marks in a similar way	
M1 For	setting up the contradiction	
'A	ssume that there is an x such that $(x-4)^2 < 2x-9 \Rightarrow x^2 - 10x + 25 \dots 0$	
A1 \Rightarrow	$(x-5)^2 \dots 0$ or $(x-5)(x-5)\dots 0$	
	is is not true as square numbers are always greater than or equal to 0,	
	nce $(x-4)^2 \ge 2x-9$	
Alt to part	(i) States $(x-5)^2 \ge 0$	
	$x^2 - 10x + 25 \ge 0$	
	$x^2 - 8x - 16 \ge 2x - 9$	
\rightarrow ($(x-4)^2 \ge 2x-9$	

Question Number	Scheme	Marks
M1 Sta	tes $(x-5)^2 \ge 0$ and attempts to expand. There is no explanation required here	
A1 Re	arranges to reach $x^2 - 8x - 16 \ge 2x - 9$	
A1* Re	aches the given answer $(x-4)^2 \ge 2x-9$ with no errors	
Th Eg Co Co If O	ows that it is not true for a value of <i>n</i> is requires a calculation (and value found) with a minimal statement that it is n g. ${}^{2^{6}}+1=65$ which is not prime' or ${}^{2^{5}}+1=33 \times {}^{2^{7}}$ ndone sloppily expressed proofs. Eg. ${}^{7}2^{7}+1=\frac{129}{3}=43$ which is not prime' ndone implied proofs where candidates write $2^{5}+1=33$ which has a factor of there are lots of calculations mark positively. nly one value is required to be found (with the relevant statement) to score the ne calculation cannot be incorrect. Eg. $2^{3}+1=10$ which is not prime	11

Question Number	Scheme	Marks
4. (a)	$\left(2-\frac{1}{4}x\right)^{6} = 2^{6}, + {}^{6}C_{1}2^{5}\left(-\frac{1}{4}x\right)^{1} + {}^{6}C_{2}2^{4}\left(-\frac{1}{4}x\right)^{2} + {}^{6}C_{3}2^{3}\left(-\frac{1}{4}x\right)^{3} + \dots$	B1, M1
	$= 64 - 48x + 15x^2 - 2.5x^3$	A1 A1
(b)	$\left(2-\frac{1}{4}x\right)^{6} + \left(2+\frac{1}{4}x\right)^{6} = \left(64-48x+15x^{2}-2.5x^{3}\right) + \left(64+48x+15x^{2}+2.5x^{3}\right)$	(4) M1
	$\approx 128 + 30x^2$	B1ft A1
		(3) (7 marks)
	Notes	I
(a)		
B1 F	or either 2 ⁶ or 64. Award for an unsimplified ${}^{6}C_{0}2^{6}\left(-\frac{1}{4}x\right)^{0}$	
	or an attempt at the binomial expansion. Score for a correct attempt at term 2, 3	
I	Accept sight of ${}^{6}C_{1}2^{5}\left(\pm\frac{1}{4}x\right)^{1} {}^{6}C_{2}2^{4}\left(\pm\frac{1}{4}x\right)^{2} {}^{6}C_{3}2^{3}\left(\pm\frac{1}{4}x\right)^{3}$ condoning omiss	ion of brackets.
I	Accept any coefficient appearing from Pascal's triangle. FYI 6, 15, 20	
	or any two simplified terms of $-48x + 15x^2 - 2.5x^3$	
	or $64-48x+15x^2-2.5x^3$ ignoring terms with greater powers. This may be awa	
o (b) N	not fully simplified in (a). Allow the terms to be listed $64, -48x, 15x^2, -2.5x$ f correct values. The expression written out without any method can be awarde tote that this is now marked M1 B1 A1 or adding two sequences that must be of the correct form with the correct signs.	d all 4 marks.
L	ook for $\left(A - Bx + Cx^2 - Dx^3\right) + \left(A + Bx + Cx^2 + Dx^3\right)$ but condone	
$\left(A-Bx-A\right)$	$-Cx^2$ + $\left(A + Bx + Cx^2\right)$	
B1ft H	For this to be scored there must be some negative terms in (a) For one correct term (follow through). Usually $a = 128$ but accept either $a = 2 \times = 2 \times \text{'their'} + ve 15$	'their'+ve 64
A1 F	or $128 + 30x^2$. CSO so must be from $(64 - 48x + 15x^2 - 2.5x^3) + (64 + 48x + 15x^2)$	$(x^2 + 2.5x^3)$
A	llow $a = 128, b = 30$ following correct work. his is a show that question so M1 must be awarded. It must be their final answe	/
Alternati	ve method in (a):	
	$\int_{0}^{6} = 2^{6} \left(1 - \frac{1}{8}x\right)^{6} = 2^{6} \left(1 + 6\left(-\frac{1}{8}x\right) + \frac{6 \times 5}{2}\left(-\frac{1}{8}x\right)^{2} + \frac{6 \times 5 \times 4}{3!}\left(-\frac{1}{8}x\right)^{3} + \dots\right)$	
M1 F	or sight of factor of either 2^6 or 64 or an attempt at the binomial expansion seen in at least one term within the brac core for a correct attempt at term 2, 3 or 4.	ckets.

Question Number	Scheme	Marks
A	Accept sight of $6\left(\pm\frac{1}{8}x\right)^1 \frac{6\times5}{2}\left(\pm\frac{1}{8}x\right)^2 \frac{6\times5\times4}{3!}\left(\pm\frac{1}{8}x\right)^3$ condoning omission of	of brackets
A1 Fo	or any two terms of $64 - 48x + 15x^2 - 2.5x^3$	
A1 Fo	or all four terms $64 - 48x + 15x^2 - 2.5x^3$ ignoring terms with greater powers	
•••••		
1	to multiply out	
B1 Fo	or 64	
	Sultiplies out to form $a + bx + cx^2 + dx^3 +$ and gets b, c or d correct. As main scheme	

Question Number	Scheme	Marks
5.(a)	$\frac{dP}{dx} = 12 - \frac{3}{2}x^{\frac{1}{2}}$ Sets $\frac{dP}{dx} = 0 \rightarrow 12 - \frac{3}{2}x^{\frac{1}{2}} = 0 \rightarrow x^{n} =$	M1A1
	Sets $\frac{dP}{dx} = 0 \rightarrow 12 - \frac{3}{2}x^{\frac{1}{2}} = 0 \rightarrow x^n =$	dM1
	$x = 64$ When $x = 64 \implies P = 12 \times 64 - 64^{\frac{3}{2}} - 120 =$ Profit = (f) 126 000	A1
	When $x = 64 \implies P = 12 \times 64 - 64^{\frac{3}{2}} - 120 =$	M1
	Profit $= (\pounds) 136\ 000$	A1 (6)
(b)	$\left(\frac{d^2P}{dx^2}\right) = -\frac{3}{4}x^{-\frac{1}{2}}$ and substitutes in their $x = 64$ to find its value or state its sign	M1
	$\left(\frac{d^2 P}{dx^2}\right) = -\frac{3}{4}x^{-\frac{1}{2}} \text{ and substitutes in their } x = 64 \text{ to find its value or state its sign}$ At $x = 64$ $\frac{d^2 P}{dx^2} = -0.09375 < 0 \Rightarrow \text{maximum}$	A1
		(2) (8 marks)
	Notes	
You shoul (a)	d mark parts a and b together. You may see work in (a) from (b)	
M1 At	tempts to differentiate $x^n \to x^{n-1}$ seen at least once. It must be an x term and not	t the $120 \rightarrow 0$
A1 $\frac{dI}{dx}$	$\frac{dy}{dx} = 12 - \frac{3}{2}x^{\frac{1}{2}}$ with no need to see the lhs. Condone $\frac{dy}{dx}$ all of the way through particular the second se	rt (a).
dM1 Se	ts their $\frac{dP}{dx} = 0$ and proceeds to $x^n = k, k > 0$. Dependent upon the previous M.	Don't be too
co	ncerned with the mechanics of process. Condone an attempted solution of $\frac{dP}{dx}$	0 where
	uld be an inequality = 64. Condone $x = \pm 64$ here	
M1 Su	bstitutes their solution for $\frac{dP}{dx} = 0$ into P and attempts to find the value of P.	
	he value of x must be positive. If two values of x are found, allow this mark for a ing a positive value.	any attempt
A1 CS	SO. Profit = (£) 136 000 or 136 thousand but not 136 or $P = 136$. is cannot follow two values for x, eg $x = \pm 64$ Condone a lack of units or incorre	ect units such
as \$ (b)	_	
M1 Ac	whieves $\frac{d^2 P}{dx^2} = kx^{-\frac{1}{2}}$ and attempts to find its value at $x = "64"$	
A	Iternatively achieves $\frac{d^2 P}{dx^2} = kx^{-\frac{1}{2}}$ and attempts to state its sign. Eg $\frac{d^2 P}{dx^2} = -\frac{3}{4}x^{-\frac{1}{2}}$	2 < 0
А	llow $\frac{d^2 P}{dx^2}$ appearing as $\frac{d^2 y}{dx^2}$ for the both marks.	
A1 Ac	whieves $x = 64$, $\frac{d^2 P}{dx^2} = -\frac{3}{4}x^{-\frac{1}{2}}$ and states $\frac{d^2 P}{dx^2} = -\frac{3}{32} < 0$ (at $x = 64$) then the pro-	ofit is
maximise	d.	

This requires the correct value of x, the correct value of the second derivative (allowing for awrt -0.09) a reason + conclusion.

Alt: Achieves x = 64, $\frac{d^2 P}{dx^2} = -\frac{3}{4}x^{-\frac{1}{2}}$ and states as x > 0 or $\sqrt{x} > 0$ means that $\frac{d^2 P}{dx^2} < 0$ then the profit is maximised.

Part (b) merely requires the use of calculus so allow

M1 Attempting to find the value of $\frac{dP}{dx}$ at two values either side, but close to their 64. Eg. For 64, allow the lower value to be $63.5 \le x < 64$ and the upper value to be $64 < x \le 64.5$ A1 Requires correct values, correct calculations with reason and conclusion

Question Number	Scheme	Marks
6. (a)	Sets $f(3)=0 \rightarrow$ equation in k Eg. $27k-135-96-12=0$	M1
	$\Rightarrow 27k = 243 \Rightarrow k = 9 * (= 0 \text{ must be seen})$	A1* (2)
(b)	$9x^{3} - 15x^{2} - 32x - 12 = (x - 3)(9x^{2} + 12x + 4)$	M1 A1
	$=(x-3)(3x+2)^{2}$	dM1 A1
		(4)
(c)	Attempts $\cos\theta = -\frac{2}{3}$	M1
	$\theta = 131.8^{\circ}, 228.2^{\circ} \text{ (awrt)}$	A1
		(2) (8 marks)
	Notes	l
	Attempts to set $f(3) = 0 \rightarrow$ equation in k Eg. $27k - 135 - 96 - 12 = 0$. Condone score when you see embedded values within the equation or two correct terms of	
A1* C A1 I	quation. It is implied by sight of $27k - 243 = 0$ or $27k = 135 + 96 + 12$. completes proof with at least one intermediate "solvable" line namely $27k = 243$ $7k - 243 = 0 \Rightarrow k = 9$. This is a given answer so there should be no errors. t is a "show that" question so expect to see) Either f(3)=0 explicitly stated or implied by sight of $27k - 135 - 96 - 12 = 0$	$3 \Longrightarrow k = 9$ or
27 <i>k</i> -24 (i	3=0 i) One solvable intermediate line followed by $k=9$	
A	A candidate could use $k = 9$ and start with $f(x) = 9x^3 - 15x^2 - 32x - 12$	
M1 F	or attempting $f(3) = 9 \times 3^3 - 15 \times 3^2 - 32 \times 3 - 12$.	
A1* S If	It attempts to divide $f(x)$ by (x-3). See below on how to score such an attempt hows that $f(3) = 0$ and makes a minimal statement to the effect that "so $k = 9$ " division is attempted it must be correct and a statement is required to the effect emainder, "so $k = 9$ "	t that there is no
If candid	ates have divided (correctly) in part (a) they can be awarded the first two marks	s in (b) when
	factorsing the $9x^2 + 12x + 4$ term.	
(b) M1 A	ttempt to divide or factorise out $(x-3)$. Condone students who use a different	value of <i>k</i> .
	or factorisation look for first and last terms $9x^3 - 15x^2 - 32x - 12 = (x - 3)(\pm 9x^2)$	2 ±4)
F	or division look for the following line $x-3\overline{)9x^3-15x^2-32x-12}$ $\underline{9x^3-27x^2}$	
	Forrect quadratic factor $9x^2 + 12x + 4$. You may condone division attempts that don't quite work as long as the correct f	factor is seen.

Question Number	Scheme	Marks
A1 (<i>x</i>	tempt at factorising their $9x^2 + 12x + 4$ Apply the usual rules for factorising $-3)(3x+2)^2$ or $(x-3)(3x+2)(3x+2)$ on one line. Accept $9(x-3)\left(x+\frac{2}{3}\right)^2$ oe. It must be seen as a product emember to isw for candidates who go on to give roots $f(x) = (x-3)(3x+2)^2$	$\Rightarrow x = \dots$
If candida If candida If candida If candida	(b) is "Hence" so take care when students write down the answer to (b) with tes state $x = -\frac{2}{3}, 3 \Rightarrow f(x) = \left(x + \frac{2}{3}\right)\left(x + \frac{2}{3}\right)(x-3)$ score 0000 ates state $x = -\frac{2}{3}, 3 \Rightarrow f(x) = (3x+2)(3x+2)(x-3)$ they score SC 1010. tes state $x = -\frac{2}{3}, 3 \Rightarrow f(x) = 9\left(x + \frac{2}{3}\right)\left(x + \frac{2}{3}\right)(x-3)$ they score SC 1010. te writes down $f(x) = (3x+2)(3x+2)(x-3)$ with no working they score SC 1010. te writes down $f(x) = (3x+2)(3x+2)(x-3)$ with no working they score SC 1010.	
(c) M1 A (Y values. Th solution. A1 CS W	correct attempt to find one value of θ in the given range for their $\cos \theta = -\frac{2}{3}$ ou may have to use a calculator). So if (b) is factorised correctly the mark is fo is can be implied by sight of awrt 132 or 228 in degrees or awrt 2.3 which is th SO awrt $\theta = 131.8^{\circ}$, 228.2° with no additional solutions within the range $0 \le \theta$ atch for correct solutions appearing from $3\cos\theta - 2 = 0 \Rightarrow \cos\theta = \frac{2}{3}$. This is N without working are acceptable.	e radian < 360°

method	M1 M1
method	
	A1
	(
	M1
ble method	M1
	A1
	(
	M1
	dM1
	A1
	(
	(9
	marks
6200 ch must have nstead of 9 <i>d</i> . ading to an a	
numerical sli	ips.
16200	
10200.	
;1 э	g numerical sli d 16200. ct log work m

tion ber	Schomo Marks		
bee			
foll	owing $31500 = 16200r^{10}$ or $\sqrt[10]{\frac{31500}{16200}}$. You may also award, condoning slips, for a	an	
atte	Simple at 16200 $\times r$ where r is their solution of $31500 = 16200r^n$ where $n = 9$ or 10		
	-		
Ac	orrect method to find the sum of either the AP or the GP		
For	the AP accept an attempt at either $\frac{10}{2}$ {16200+31500} or $\frac{10}{2}$ {2×16200+9×'d'}		
For	the GP accept an attempt at either $\frac{16200(r'^{10}-1)}{r'-1}$ or $\frac{16200(1-r'^{10})}{1-r'}$		
¹ Both formulae must be attempted "correctly" (see above) and the difference taken (either way			
FY Dif	ference = $\pounds7480$ CAO. Note that this answer is found using the unrounded va	due for <i>r</i> .	
If the solutions for (a) and (b) are reversed, eg GP in (a) and AP in (b) then please send to review.			
	General approach to marking part (i) This is now marked M1 A1 M1 A1 o	n epen	
log	$_{2}$ 8 but sometimes $\log_{2} \frac{3}{4}$ and others so read each solution carefully		
Atte			
	Eg. $\log_2 6 = \log_2 2 + \log_2 3$ which is implied by $\log_2 6 = 1 + \log_2 3$		
	Eg. $\log_2 \frac{3}{4} = \log_2 3 - \log_2 4$ which may be implied by $\log_2 3 - 2$		
F		$\frac{2}{-}$ is A0	
	ber A c bee All foll atte For Not A c For For Bot d) FY Not Solut Tak For log Atte	Scheme A correct attempt to find the second term by multiplying 16 200 by their 'r' which must been found via an allowable method. Allow r to be found from an "incorrect" GP formula with 10 being used instead of 9. Eg following $31500 = 16\ 200\ r^{10}$ or $\sqrt[4]{\frac{31500}{16200}}$. You may also award, condoning slips, for a attempt at $16200 \times r$ where r is their solution of $31500 = 16\ 200\ r^n$ where $n = 9$ or 10 For an answer in the range $\pounds 17440 \leqslant \$ \le 17450$ Note that $r = 1.077 \Rightarrow 17447.40$ A correct method to find the sum of either the AP or the GP For the AP accept an attempt at either $\frac{10}{2} \{16200 + 31500\}$ or $\frac{10}{2} \{2 \times 16200 + 9 \times 'd'\}$ For the GP accept an attempt at either $\frac{16200('r^{10}-1)}{'r'-1}$ or $\frac{16200(1-'r^{10})}{1-'r'}$ Both formulae must be attempted "correctly" (see above) and the difference taken (either d) FYI if d and r are correct, the sums are $\pounds 238\ 500\ and\ \pounds 231\ 019.(24)$ Difference = $\pounds 7480$ CAO. Note that this answer is found using the unrounded value Note that using the rounded value will give $\pounds 7130\ which is A0$ solutions for (a) and (b) are reversed, eg GP in (a) and AP in (b) then please send to revie General approach to marking part (i) This is now marked MI A1 MI A1 o Takes log of both sides and uses the power law. Accept any base. Condone missing bra For a correct linear equation in x which only involve logs of base 2 usually $\log_2 6$, $\log \log_2 8$ but sometimes $\log_2 \frac{3}{4}$ and others so read each solution carefully Attempts to use a log law to create a linear equation in $\log_2 3$	

Question Number	Please read notes for 8(i) before looking at scheme		Marks
8. (i)	$8^{2x+1} = 6 \Longrightarrow 2x+1 = \log_8 6 \qquad M1$	$2^{6x+3} = 6$	
	$\Rightarrow 2x + 1 = \frac{\log_2 6}{\log_2 8} $ A1	$\Rightarrow (6x+3)\log_2 2 = \log_2 6 \qquad \text{M1 A1}$	
	$\Rightarrow 2x + 1 = \frac{\log_2 2 + \log_2 3}{3} \qquad M1$	$\Rightarrow (6x+3) = \log_2 2 + \log_2 3 \qquad M1$	
	$\Rightarrow x = \frac{\log_2 3}{6} - \frac{1}{3} \qquad A1$	$\Rightarrow x = \frac{\log_2 3}{6} - \frac{1}{3} $ A1	
	$\log (7, 2y) - 2\log (y+1) = 1$	$\frac{1}{2} \log (n+1) \log (7-2n) = 1$	(4)
(ii)	$\log_5(7-2y) = 2\log_5(y+1)-1$	$2\log_5(y+1) - \log_5(7-2y) = 1$	
	$\log_{5}(7-2y) = \log_{5}(y+1)^{2} - 1$	$\log_{5}(y+1)^{2} - \log_{5}(7-2y) = 1$	M1
	$\log_5(7-2y) = \log_5(y+1)^2 - \log_5 5$	$\log_5 \frac{(y+1)^2}{(7-2y)} = 1$	dM1
	$\left(7-2y\right) = \frac{\left(y+1\right)^2}{5}$	$\frac{\left(y+1\right)^2}{\left(7-2y\right)} = 5$	A1
	$y^2 + 12y - 34 = 0 \Longrightarrow y =$	$y^2 + 12y - 34 = 0 \Longrightarrow y =$	ddM1
	y = -6 + x	$\sqrt{70}$ oe only	A1
			(5) (9 marks)
Notes			

There are many different ways to attempt this but essentially can be marked in a similar way. If index work is used marks are not scored until the log work is seen

Eg 1: $8^{2x+1} = 6 \Longrightarrow 8^{2x} \times 8 = 6 \Longrightarrow 8^{2x} = \frac{3}{4}$. 1ST M1 is scored for $2x = \log_8 \frac{3}{4}$ and then 1ST A1 for $2x = \frac{\log_2 \frac{3}{4}}{\log_2 8}$

but BOTH of these marks would be scored for $2x \log_2 8 = \log_2 \frac{3}{4}$

 2^{nd} M1 would then be awarded for $\log_2 \frac{3}{4} = \log_2 3 - \log_2 4$ which may be implied by $\log_2 3 - 2$ Two more examples where the candidate initially uses index work.

$8^{2x+1} = 6 \Longrightarrow 2^{3(2x+1)} = 6$	$8^{2x+1} = 6 \Longrightarrow 64^x = \frac{3}{4}$
$3(2x+1) = \log_2 6$ is M1 A1	$\Rightarrow x = \log_{64} \frac{3}{4}$ is M1
as it is a correct linear equation in x involving a log 2 term	But $\Rightarrow x \log_2 64 = \log_2 \frac{3}{4}$ is M1 A1

Questi Numb	Please read notes for XIII before looking at scheme	Marks
(ii) M1	Attempts a correct log law. This may include $2\log_5(y+1) \rightarrow \log_5(y+1)^2 \qquad 1 \rightarrow \log_5 5$ You may award this following incorrect work. Eg $1 = 2\log_5(y+1) - \log_5(7-2y) \Rightarrow 1 = \log_5 2(y+1) - \log_5(7-2y) \Rightarrow 1 = \log_5 \frac{2(y+1)}{(7-2y)}$	
dM1	Uses two correct log laws. It may not be awarded following errors (see above) It is awarded for $2\log_5(y+1)-1 = \log_5\frac{(y+1)^2}{5}$, $2\log_5(y+1)-\log_5(7-2y) = \log_5\frac{(y+1)^2}{(7+1)^2}$ $1 + \log_5(7-2y) = \log_55(7-2y)$ or $2\log_5(y+1)-1 = \log_5(y+1)^2 - \log_55$	$\left(\frac{y+1}{2}\right)^2$
A1 ddM1 14.4 A1	A correct equation in 'y' not involving logs A correct attempt at finding at least one value of y from a 3TQ in y All previous M's must have been awarded. It can be awarded for decimal answer(s), 2. $y = -6 + \sqrt{70}$ or exact equivalent only. It cannot be the decimal equivalent but award if the candidate chooses 2.4 following the	
	answer. If $y = -6 \pm \sqrt{70}$ then the final A mark is withheld Special case: Candidates who write $\log_5(y+1)^2 - \log_5(7-2y) = 1 \Rightarrow \frac{\log_5(y+1)^2}{\log_5(7-2y)} = 1 \Rightarrow \frac{(y+1)^2}{(7-2y)} = 5$ can score M1 dM0 A0 ddM1 A1 if they find the correct answer.	

Question Number	Scheme	Marks	
9 (a)	Uses $\tan\theta = \frac{\sin\theta}{\cos\theta} \rightarrow \qquad \cos\theta - 1 = 4\sin\theta \frac{\sin\theta}{\cos\theta}$	M1	
	$\cos^2\theta - \cos\theta = 4\sin^2\theta$ oe	A1	
	Uses $\sin^2 \theta = 1 - \cos^2 \theta \rightarrow \cos^2 \theta - \cos \theta = 4(1 - \cos^2 \theta)$	M1	
	$5\cos^2\theta - \cos\theta - 4 = 0 *$	A1 *	
(b)	$(5\cos 2x + 4)(\cos 2x - 1) = 0$	(4) M1	
	Critical values of $-\frac{4}{5}$,1	A1	
	Correct method to find x from their $\cos 2x = -\frac{4}{5}$	dM1	
	x = 0, 1.25	A1	
		(4) (8 marks)	
	Notes		
(a)			
M1 U	Uses $\tan\theta = \frac{\sin\theta}{\cos\theta}$ of $\tan\theta$ in their $\cos\theta - 1 = 4\sin\theta \tan\theta$.		
Condone slips in coefficients and the equation may have been adapted. This may be implied by candidates who multiply by $\cos\theta$ and reach $\cos\theta - 1 = 4\sin\theta \tan\theta \Rightarrow \cos^2\theta - \cos\theta = 4\sin^2\theta$. This would be M1 A1 A1 Correct equation, without any fractional terms, in $\sin\theta$ and $\cos\theta$			
	If the identity $\sin^2 \theta = 1 - \cos^2 \theta$ is used before the multiplication by $\cos \theta$ then it will be for a		
$\frac{\text{correct}}{\cos^2 \theta}$	equation, without any fractional terms, in $\cos\theta$ Condone incorrect nota	uon cos <i>e</i> 10r	
M1 U	M1 Uses $\sin^2 \theta = 1 - \cos^2 \theta$ to produce an equation in just $\cos \theta$		
A1* Proceeds to $5\cos^2\theta - \cos\theta - 4 = 0$ with no arithmetical or notational errors. Both identities must be seen to have been applied. Candidates cannot just go from $\cos^2\theta - \cos\theta = 4\sin^2\theta$ to the answer without any evidence of the appropriate identity. No mixed variables within the lines of the "proof" Condone incomplete lines if it is part of their working. $\cos^2\theta - \cos\theta = 4\sin^2\theta$ Eg. $= 4(1 - \cos^2\theta)$			
ŀ	An example of a notational error is $\cos^2 \theta$ (Note that this would only lose the A1*)		
(b) M1 A	ttempts to find the critical values of the given quadratic by a correct method.		
A1 (Critical values of $-\frac{4}{5}$, 1. Allow this to be scored even if written as $\cos x = \dots$ or e	ven x.	
A	llow these to be written down (from a calculator)		

Questior Number	Scheme	Marks	
dM1 A	correct method to find one value of x from their $\cos 2x = -\frac{4}{5}$ Look for correct	order of	
operation	S.		
It	is dependent upon the previous mark.		
Т	This can be implied by awrt $1.5/71.6^{\circ}$ or awrt $1.24/1.25$ (rads)		
A1 B	oth $x = 0$ and awrt 1.25 with no other values in the range $0 \le x < \frac{\pi}{2}$.		
C	ondone 1.25 written as 0.398π . Condone if written as $\theta =$		
Answers without working can score all marks: Score M1 for one value and M1 A1 M1 A1 for both values and no others in the range.			

Question Number	Scheme	Marks
10 (a)	$(f'(x)) = -\frac{72}{x^3} + 2$	M1 A1
	Attempts to solve $f'(x) = 0 \Longrightarrow x = \text{ via } x^{\pm n} = k, k > 0$ $x > \sqrt[3]{36}$ oe	dM1 A1 (4)
(b)	$\int \frac{36}{x^2} + 2x - 13 \mathrm{d}x = -\frac{36}{x} + x^2 - 13x (+c)$	M1 A1
	Uses limits 9 and 2 = $\left(-\frac{36}{9}+9^2-13\times9\right) - \left(-\frac{36}{2}+2^2-13\times2\right) = 0*$	dM1 A1*
(c)(i)	8	(4) B1
(ii)	$\int_{-2}^{6} \left(\frac{36}{x^{2}} + 2x + k\right) dx = 0 \Rightarrow \left[-\frac{36}{x} + x^{2} + kx\right]_{0}^{6} = 0 \Rightarrow (30 + 6k) - (-14 + 2k) = 0$	
	$44 + 4k = 0 \Longrightarrow k = -11$	M1 A1
		(3) (11 marks)
	Notes	
M1 Attempts $f'(x)$ with one index correct. Allow for $x^{-2} \rightarrow x^{-3}$ or $2x \rightarrow 2$ A1 $f'(x) = -\frac{72}{x^3} + 2$ correct but may be unsimplified $f'(x) = 36 \times -2x^{-3} + 2$ dM1 Attempts to find where $f'(x) = 0$. Score for $x^n = k$ where $k > 0$ and $n \neq \pm 1$ leading to $x =$ Do not allow this to be scored from an equation that is adapted incorrectly to get a positive k . Allow this to be scored from an attempt at solving $f'(x)0$ where $$ can be any inequality A1 Achieves $x > \sqrt[3]{36}$ or $x > 6^{\frac{2}{3}}$ Allow $x \ge \sqrt[3]{36}$ or $x \ge 6^{\frac{2}{3}}$ but not $x > \left(\frac{1}{36}\right)^{-\frac{1}{3}}$ We require an exact value but remember to isw. An answer of 3.302 usually implies the first 3 marks.		
(b) M1 For $x^n \to x^{n+1}$ seen on either $\frac{36}{x^2}$ or $2x$. Indices must be processed. eg $x^{1+1} \to x^2$ A1 $\int \frac{36}{x^2} + 2x - 13 dx = -\frac{36}{x} + x^2 - 13x$ which may be unsimplified. Eg $x^2 \leftrightarrow \frac{2x^2}{2}$ Allow with $+ c$ dM1 Substitutes 9 and 2 into their integral and subtracts either way around. Condone missing brackets Dependent upon the previous M A1* Completely correct integration with either embedded values seen or calculated values (-40) - (-40) Note that this is a given answer and so the bracketing must be correct.		

Question Number	Scheme	Marks		
(c)(i) B1 For				
(c)(ii) M1 Th	is may be awarded in a variety of ways			
•	A restart (See scheme). For this to be awarded all terms must be integrated w the limits 6 and 2 applied, the linear expression in k must be set equal to 0 an attempted.	d a solution		
•	• An attempt at solving $\int_{2}^{2} k + 13 dx = 8$ or equivalent. Look for the linear equation			
•	 -8+4(13+k) = 0 or 4(13+k) = 8 and a solution attempted. Recognising that the curve needs to be moved up 2 units. 			
•	Sight of $\frac{8}{6-2}$ or $-13+2$			
A1 k =	= -11. This alone can be awarded both marks as long as no incorrect working i	s seen.		

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom