Question	Scheme	Marks
1(a)	$y = 4x^3 - \frac{5}{x^2}$	
	$x^{n} \rightarrow x^{n-1}$ e.g. sight of x^{2} or x^{-3} or $\frac{1}{x^{3}}$	M1
	$3 \times 4x^2$ or $-5 \times -2x^{-3}$ (o.e.) (Ignore + c for this mark)	A1
	$12x^2 + \frac{10}{x^3}$ or $12x^2 + 10x^{-3}$	A1
	<u>all on one line</u> and no + c	
		(3)
(b)	$x^n \rightarrow x^{n+1}$ e.g. sight of x^4 or x^{-1} or $\frac{1}{x^1}$	M1
	Do <u>not</u> award for integrating their answer to part (a) $4\frac{x^4}{4}$ or $-5 \times \frac{x^{-1}}{-1}$	A1
	For fully correct and simplified answer with + c <u>all on one line</u> . Allow $\Rightarrow \text{Allow } x^4 + 5 \times \frac{1}{x} + c$ $\Rightarrow \text{Allow } 1x^4 \text{ for } x^4$	A1
		(3)
	(6 marks)

QuestionSchemeMarks2(a)
$$3^{-1.5} = \frac{1}{3\sqrt{3}} \left(\frac{x\sqrt{3}}{x\sqrt{3}}\right)$$
M1 $= \frac{\sqrt{3}}{9}$ so $a = \frac{1}{9}$ A1 $= \frac{\sqrt{3}}{9}$ so $a = \frac{1}{9}$ A1(2)Alternative $3^{-1.5} = a\sqrt{3} \Rightarrow a = \frac{3^{-1.5}}{3^{0.5}} = 3^{-1.5-0.5}$ M1 $\Rightarrow a = 3^2 = \frac{1}{9}$ A1(b) $\left(2x^{\frac{1}{2}}\right)^3 = 2^3x^{\frac{3}{2}}$ One correct power either 2^3 or x^2 . $\frac{8x^2}{4x^2} = 2x^{-\frac{1}{2}}$ or $\frac{2}{\sqrt{x}}$ dM1A1(3)(5 marks)Notes:(a)M1: Scored for a full attempt to write $3^{-1.5}$ in the form $a\sqrt{3}$ or, as an alternative, makes a the subject and attempts to combine the powers of 3A1: For $a = \frac{1}{9}$ Note: A correct answer with no working scores full marks(b)M1: For an attempt to expand $\left(2x^{\frac{1}{2}}\right)^3$ Scored for one correct power either 2^3 or $x^{\frac{3}{2}}$.M1: For dividing their coefficients of x and subtracting their powers of x . Dependent upon the previous M1A1: Correct answer $2x^{-\frac{1}{2}}$ or $\frac{2}{\sqrt{x}}$

Question	Sche	eme	Marks
3	y = -4x - 1 $\Rightarrow (-4x - 1)^2 + 5x^2 + 2x = 0$	Attempts to makes <i>y</i> the subject of the linear equation and substitutes into the other equation.	M1
	$21x^2 + 10x + 1 = 0$	Correct 3 term quadratic	A1
	$(7x+1)(3x+1) = 0 \implies (x=)-\frac{1}{7}, -\frac{1}{3}$	dM1: Solves a 3 term quadratic by the usual rules	dM1A1
		A1: $(x =) -\frac{1}{7}, -\frac{1}{3}$	un u
	3 1	M1: Substitutes to find at least one <i>y</i> value	
	$y = -\frac{3}{7}, \frac{1}{3}$	A1: $y = -\frac{3}{7}, \frac{1}{3}$	M1 A1
			(6)
	Alternative		
	$x = -\frac{1}{4}y - \frac{1}{4}$	Attempts to makes <i>x</i> the subject of the linear equation and substitutes into the other equation.	M1
	$\Rightarrow y^{2} + 5\left(-\frac{1}{4}y - \frac{1}{4}\right)^{2} + 2\left(-\frac{1}{4}y - \frac{1}{4}\right) = 0$		1011
	$\frac{21}{16}y^2 + \frac{1}{8}y - \frac{3}{16} = 0$ (21y ² + 2y - 3 = 0)	Correct 3 term quadratic	A1
	3 1	Solves a 3 term quadratic	dM1
	$(7y+3)(3y-1) = 0 \Longrightarrow (y=) -\frac{3}{7}, \frac{1}{3}$	$(y=)-\frac{3}{7}, \frac{1}{3}$	A1
	1 1	Substitutes to find at least one <i>x</i> value.	M1
	$x = -\frac{1}{7}, -\frac{1}{3}$	$x = -\frac{1}{7}, -\frac{1}{3}$	A1
			(6)
		(6 marks)

tion	Scheme	Marks
,	Sets $2x^2 + 8x + 3 = 4x + c$ and collects <i>x</i> terms together	M1
	Obtains $2x^2 + 4x + 3 - c = 0$ o.e.	A1
	States that $b^2 - 4ac = 0$	dM1
	$4^2 - 4 \times 2 \times (3 - c) = 0$ and so $c =$	dM1
	$c = 1 \operatorname{cso}$	A1
		(5)
	Alternative 1A	
	Sets derivative " $4x + 8$ " = 4 $\Rightarrow x =$	M1
	x = -1	A1
	Substitute $x = -1$ in $y = 2x^2 + 8x + 3 \ (\Rightarrow y = -3)$	dM1
	Substitute $x = -1$ and $y = -3$ in $y = 4x + c$ or into $(y + 3)=4(x + 1)$ and expand	dM1
	c = 1 or writing $y = 4x + 1$ cso	Al
		(5)
	Alternative 1B	I
(Sets derivative " $4x + 8$ " = 4 $\Rightarrow x =$,	M1
	x = -1	A1
	Substitute $x = -1$ in $2x^2 + 8x + 3 = 4x + c$	dM1
	Attempts to find value of <i>c</i>	dM1
	c = 1 or writing $y = 4x + 1$ cso	A1
		(5)
1	Alternative 2	
•	Sets $2x^2 + 8x + 3 = 4x + c$ and collects x terms together	M1
(Obtains $2x^2 + 4x + 3 - c = 0$ or equivalent	A1
	States that $b^2 - 4ac = 0$	dM1
	$4^2 - 4 \times 2 \times (3 - c) = 0$ and so $c =$	dM1
	$c = 1 \operatorname{cso}$	A1
		(5)
	Alternative 3	
,	Sets $2x^2 + 8x + 3 = 4x + c$ and collects x terms together	M1
	Obtains $2x^2 + 4x + 3 - c = 0$ or equivalent	A1
	Uses $2(x+1)^2 - 2 + 3 - c = 0$ or equivalent	dM1
	Writes $-2+3-c=0$	dM1
	So $c = 1 \operatorname{cso}$	A1
		(5)
		(5 marks)

Question 4 continued

Notes:

Method 1A

- M1: Attempts to solve their $\frac{dy}{dx} = 4$. They must reach $x = \dots$ (Just differentiating is M0 A0).
- A1: x = -1 (If this follows $\frac{dy}{dx} = 4x + 8$, then give M1 A1 by implication).
- **dM1:** (Depends on previous M mark) Substitutes their x = -1 into f(x) or into "their f(x) from (b)" to find y.
- **dM1:** (Depends on both previous M marks) Substitutes their x = -1 and their y = -3 values into y = 4x + c to find c or uses equation of line is (y + "3") = 4(x + "1") and rearranges to y = mx+c
- A1: c = 1 or allow for y = 4x + 1 cso.

Method 1B

M1A1: Exactly as in Method 1A above.

- **dM1:** (Depends on previous M mark) Substitutes their x = -1 into $2x^2 + 8x + 3 = 4x + c$
- **dM1:** Attempts to find value of c then A1 as before.

Method 2

- M1: Sets $2x^2 + 8x + 3 = 4x + c$ and tries to collect x terms together.
- A1: Collects terms e.g. $2x^2 + 4x + 3 c = 0$ or $-2x^2 4x 3 + c = 0$ or $2x^2 + 4x + 3 = c$ or even $2x^2 + 4x = c 3$. Allow "=0" to be missing on RHS.

dM1: Then use completion of square $2(x+1)^2 - 2 + 3 - c = 0$ (Allow $2(x+1)^2 - k + 3 - c = 0$) where k is non zero. It is enough to give the correct or almost correct (with k) completion of the square.

- **dM1:** -2 + 3 c = 0 AND leading to a solution for c (Allow -1 + 3 c = 0) (x = -1 has been used)
- A1: $c = 1 \operatorname{cso}$

Method 3

- M1: Sets $2x^2 + 8x + 3 = 4x + c$ and tries to collect x terms together. May be implied by $2x^2 + 8x + 3 4x \pm c$ on one side.
- A1: Collects terms e.g. $2x^2 + 4x + 3 c = 0$ or $-2x^2 4x 3 + c = 0$ or $2x^2 + 4x + 3 = c$ even $2x^2 + 4x = c 3$. Allow "=0" to be missing on RHS.
- **dM1:** Then use completion of square $2(x+1)^2 k + 3 c = 0$ (Allow $2(x+1)^2 k + 3 c = 0$) where k is non zero. It is enough to give the correct or almost correct (with k) completion of the square.

dM1: -2 + 3 - c = 0 AND leading to a solution for c (Allow -1 + 3 - c = 0) (x = -1 has been used)

A1: $c = 1 \operatorname{cso}$

Quest	on	Marks
5(a)	Straight line, positive gradient positive intercept	B1
	Curve 'U' shape anywhere	B1
	2 Correct y intercepts 2, -6	B1
	$\begin{array}{c c} \hline & -2 \\ \hline & -6 \end{array}$ Correct <i>x</i> -intercepts of -2 and 3 with intersection shown at (-2, 0)	B1
		(4)
(b)	Finite region between line and curve shaded	B1
		(1)
(c)	$(x^2 - x - 6 < x + 2) \implies x^2 - 2x - 8 < 0$	
	$(x-4)(x+2) < 0 \implies$ Line and curve intersect at $x = 4$ and $x = -2$	M1 A1
	-2 < x < 4	A1
		(3)
		8 marks)
Notes:		
(a)	As scheme.	
(b)	As scheme.	
(c)		
	For a valid attempt to solve the equation $x^2 - 2x - 8 = 0$	
	For $x = 4$ and $x = -2$	
A1:	-2 < x < 4	

Ques	stion	Scl	ieme	Marks
6(a)		Shape \bigvee through (0, 0)	B1
			(3, 0)	B1
			(1.5, -1)	B1
			·	(3)
(t)		Shape \int , <u>not</u> through $(0, 0)$	B1
			Minimum in 4 th quadrant	B1
			(-p, 0) and $(6-p, 0)$	B1
			(3 – <i>p</i> , –1)	B1
				(4)
			(7 marks)
Notes	5:			
(a) B1: B1: B1:	(3,0)		0,3) on x - axis). or stated and matching minimum point o	on the
(b) B1: B1:	Is fo (i.e.	r any translated curve to left or right or r minimum in 4^{th} quadrant and x interce correct position).	epts to left and right of y axis	
B1: B1:	Coordinates stated or shown on x axis (Allow $(0 - p, 0)$ instead of $(-p, 0)$) Coordinates stated.			
D1.	Note sever all m	e: If values are taken for <i>p</i> , then it is porral attempts. (In this case none of the cu	ossible to give M1A1B0B0 even if there a urves should go through the origin for M1 all <i>x</i> intercepts need to be to left and r	l and

Ques	ion Scheme	Marks
7	$f(x) = \int \left(\frac{3}{8}x^2 - 10x^{-\frac{1}{2}} + 1\right) dx$	
	$x^{n} \rightarrow x^{n+1} \Longrightarrow f(x) = \frac{3}{8} \times \frac{x^{3}}{3} - 10 \frac{x^{\frac{1}{2}}}{\frac{1}{2}} + x(+c)$	M1 A1 A1
	Substitute $x = 4, y = 25 \implies 25 = 8 - 40 + 4 + c$ $\implies c =$	M1
	$f(x) = \frac{x^3}{8} - 20x^{\frac{1}{2}} + x + 53$	A1
		(5)
		(5 marks)
Notes		
M1:	Attempt to integrate $x^n \rightarrow x^{n+1}$	
A1:	Term in x^3 or term in $x^{\frac{1}{2}}$ correct, coefficient need not be simplified, no need for +	x nor +c
A1:	ALL three terms correct, coefficients need not be simplified, no need for $+ c$	
M1:	For using $x = 4$, $y = 25$ in their $f(x)$ to form a linear equation in c and attempt to find c	
A1:	$=\frac{x^3}{8}-20x^{\frac{1}{2}}+x+53$ cao (all coefficients and powers must be simplified to give the	
	answer- do not need a left hand side and if there is one it may be $f(x)$ or y). Need f expression with 53. These marks need to be scored in part (a).	ìull

Que	stion	Sc	cheme	Marks
8((a)	a) $2x + 3y = 26 \Rightarrow 3y = 26 \pm 2x$ and attempt to find <i>m</i> from $y = mx + c$		M1
		$(\Rightarrow y = \frac{26}{3} - \frac{2}{3}x)$ so gradient = $-\frac{2}{3}$		A1
		Gradient of perpendi	icular = $\frac{-1}{\text{their gradient}}$ (= $\frac{3}{2}$)	M1
		Line goes	through (0, 0) so $y = \frac{3}{2}x$	A1
				(4)
()	b)	Solves their $y = \frac{3}{2}x$ with their $2x + 3$	3y = 26 to form equation in x or in y	M1
		Solves their equation in x or in y to x	obtain $x =$ or $y =$	dM1
		$x = 4$ or any equivalent e.g. $\frac{156}{39}$ or $y = 6$ o.a.e		A1
			$B=(0,\frac{26}{3})$ used or stated in (b)	B1
			Area = $\frac{1}{2} \times "4" \times \frac{"26"}{3}$	dM1
		$\frac{26}{3}$ $x=4$	$=\frac{52}{3}$ (o.e. with integer numerator and denominator)	A1
				(6)
			(1)	0 marks)
Notes	:		× ×	,
(a) M1:	Rearr Or fir (13,0	anges $2x + 3y = 26 \Rightarrow y = mx + c$ so <i>n</i> and scoordinates of two points on line <i>a</i> and (1,8) so $m = \frac{8-0}{1-13}$	and finds gradient e.g.	
A1:	in cor	States or implies that gradient $=-\frac{2}{3}$ condone $=-\frac{2}{3}x$ if they continue correctly. Ignore errors in constant term in straight line equation.		
M1:	Uses	ses $m_1 \times m_2 = -1$ to find the gradient of l_2 . This can be implied by the use of $\frac{-1}{\text{their gradient}}$		
A1:	4	$y = \frac{3}{2}x$ or $2y - 3x = 0$ Allow $y = \frac{3}{2}x + 0$ Also accept $2y = 3x$, $y = \frac{39}{26}x$ or even		
	<i>y</i> -0	$=\frac{3}{2}(x-0)$ and isw.		

(b)

M1: Eliminates variable between their $y = \frac{3}{2}x$ and their (possibly rearranged) 2x + 3y = 26 to

form an equation in x or y. (They may have made errors in their rearrangement).

- **dM1:** (Depends on previous M mark) Attempts to solve their equation to find the value of x or y
- A1: x = 4 or equivalent or y = 6 or equivalent
- **B1:** *y* coordinate of *B* is $\frac{26}{3}$ (stated or implied) isw if written as $(\frac{26}{3}, 0)$.

Must be used or stated in (b)

dM1: (Depends on previous M mark) Complete method to find area of triangle *OBC* (using their values of x and/or y at point C and their $\frac{26}{3}$)

A1: Cao
$$\frac{52}{3}$$
 or $\frac{104}{6}$ or $\frac{1352}{78}$ o.e

Alternative 1

Uses the area of a triangle formula $\frac{1}{2} \times OB \times (x \text{ coordinate of } C)$

Alternative methods: Several Methods are shown below. The only mark which differs from Alternative 1 is the last M mark and its use in each case is described below:

Alternative 2

In 8(b) using $\frac{1}{2} \times BC \times OC$

dM1: Uses the area of a triangle formula $\frac{1}{2} \times BC \times OC$ Also finds OC (= $\sqrt{52}$) and BC= ($\frac{4}{3}\sqrt{13}$)

Alternative 3

In 8(b) using $\frac{1}{2} \begin{vmatrix} 0 & 4 & 0 & 0 \\ 0 & 6 & \frac{26}{3} & 0 \end{vmatrix}$

dM1: States the area of a triangle formula $\frac{1}{2} \begin{vmatrix} 0 & 4 & 0 & 0 \\ 0 & 6 & \frac{26}{3} & 0 \end{vmatrix}$ or equivalent with their values

Alternative 4

In 8(b) using area of triangle OBX – area of triangle OCX where X is point (13, 0)

dM1: Uses the correct subtraction $\frac{1}{2} \times 13 \times "\frac{26}{3}" - \frac{1}{2} \times 13 \times "6"$

Alternative 5

In 8(b) using area = $\frac{1}{2}(6 \times 4) + \frac{1}{2}(4 \times 8/3)$ drawing a line from C parallel to the *x* axis and dividing triangle into two right angled triangles

dM1: For correct method area = $\frac{1}{2}$ ("6" × " 4") + $\frac{1}{2}$ ("4" × ["26/3"-"6"])

Method 6 Uses calculus

dM1:
$$\int_{0}^{4} \left\| \frac{26}{3} \right\| - \frac{2x}{3} - \frac{3x}{2} dx = \left[\frac{26}{3} x - \frac{x^{2}}{3} - \frac{3x^{2}}{4} \right]_{0}^{4}$$

Question	Scheme	Marks
9(a)	Substitutes $x = 2$ into $y = 20 - 4 \times 2 - \frac{18}{2}$ and gets 3	B1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -4 + \frac{18}{x^2}$	M1 A1
	Substitute $x = 2 \Rightarrow \frac{dy}{dx} = \left(\frac{1}{2}\right)$ then finds negative reciprocal (-2)	dM1
(b) Put $20-4x - \frac{18}{x} = -2x + 7$ and simplify to give $2x^2 - 13x + 18 = 0$ (7-y) = 18		ddM1
		A1*
		(6)
(b)	Put $20 - 4x - \frac{18}{x} = -2x + 7$ and simplify to give $2x^2 - 13x + 18 = 0$ Or put $y = 20 - 4\left(\frac{7 - y}{2}\right) - \frac{18}{\left(\frac{7 - y}{2}\right)}$ to give $y^2 - y - 6 = 0$	M1 A1
	(2) (2x-9)(x-2) = 0 so $x =$ or $(y-3)(y+2) = 0$ so $y =$	dM1
	$\left(\frac{9}{2},-2\right)$	A1 A1
		(5)
		(11 marks
Notes:		
Curv M1: For A1: Corr dM1: Dep	stitutes $x = 2$ into expression for y and gets 3 cao (must be in part (a) and must re equation – not line equation). This must be seen to be substituted. an attempt to differentiate the negative power with x^{-1} to x^{-2} . rect expression for $\frac{dy}{dx} = -4 + \frac{18}{x^2}$ endent on first M1 substitutes $x = 2$ into their derivative to obtain a numerical find negative reciprocal or states that $-2 \times \frac{1}{2} = -1$	
Alternative	2	
	endent on first M1. Finds equation of line using changed gradient (not their $\frac{1}{2}$	but ¹
2 or	-2) e.g. $y - "3" = -"2"(x - 2)$ or $y = "-2"x + c$ and use of (2, "3") to find $c = 2$ This is a given answer $y = -2x + 7$ obtained with no errors seen and equation s	
Alternative dM1: Use A1*: cso.	e 2 – checking given answer s given equation of line and checks that (2, 3) lies on the line. This is a given answer $y = -2x + 7$ so statement that normal and line have the dient and pass through the same point must be stated.	esame

Question 9 notes continued

(b)

- M1: Equate the two given expressions, collect terms and simplify to a 3TQ. There may be sign errors when collecting terms but putting for example $20x 4x^2 18 = -2x + 7$ is M0 here.
- A1: Correct 3TQ = 0 (need = 0 for A mark) $2x^2 13x + 18 = 0$
- **dM1:** Attempt to solve an appropriate quadratic by factorisation, use of formula, or completion of the square (see general instructions).

A1:
$$x = \frac{9}{2}$$
 o.e or $y = -2$ (allow second answers for this mark so ignore $x = 2$ or $y = 3$)

A1: Correct solutions only so both
$$x = \frac{9}{2}$$
, $y = -2$ or $\left(\frac{9}{2}, -2\right)$

If x = 2, y = 3 is included as an answer and point B is not identified then last mark is A0. Answer only – with no working – send to review. The question stated 'use algebra'.

Question	Scheme		Marks
10(a)	$9^2 = 4^2 + 6^2 - 2 \times 4 \times 6 \cos \alpha \Longrightarrow \cos \alpha = \dots$	$\begin{array}{c} \text{Correct use of cosine rule} \\ \text{leading to a value for } \cos\alpha \end{array}$	M1
	$\cos \alpha = \frac{4^2 + 6^2 - 9^2}{2 \times 4 \times 6} \bigg(= -$	$\frac{29}{48} = -0.604$	
	$\alpha = 2.22$ *	^c CSO	A1
			(2)
	Alternative		
	$XY^{2} = 4^{2} + 6^{2} - 2 \times 4 \times 6 \cos 2.22 \Longrightarrow XY^{2} =$	= Correct use of cosine rule leading to a value for XY^2	M1
	XY = 9.00.		A1
			(2)
(b)	$2\pi - 2.22(=4.06366)$	$2\pi - 2.22$ or $2\pi - 2.2$ or awrt 4.06 (May be implied)	B1
	$\frac{1}{2} \times 4^2 \times "4.06"$	Correct method for major sector area. Allow $\pi - 2.22$ for the major sector angle.	M1
	32.5	Awrt 32.5	A1
			(3)
	Alternative – Circle Minor – sector		
	$\pi \times 4^2$	Correct expression for circle area	B1
	$\pi \times 4^2 - \frac{1}{2} \times 4^2 \times 2.22 = 32.5$	Correct method for circle - minor sector area	M1
	= 32.5	Awrt 32.5	A1
			(3)
(c)	Area of triangle = $\frac{1}{2} \times 4 \times 6 \times \sin 2.22 (= 9.56)$	Correct expression for the area of triangle XYZ (allow 2.2 or awrt 2.22)	B1
	So area required = " 9.56" + "32.5"	Their Triangle XYZ + part (b) or correct attempt at major sector (Not triangle ZXW)	M1
	Area of logo = 42.1 cm^2 or 42.0 cm^2	Awrt 42.1 or 42.0 (or just 42)	A1
			(3)
(d)	Arc length = $4 \times 4.06 (= 16.24)$	M1: $4 \times their(2\pi - 2.22)$	M1
	or	or circumference – minor arc	A1ft
	$8\pi - 4 \times 2.22$	A1: Correct ft expression	
	Perimeter = $ZY + WY$ + Arc Length	9 + 2 + Any Arc	M1
	Perimeter of logo = 27.2 or 27.3	Awrt 27.2 or awrt 27.3	A1

Pearson Edexcel International Advanced Subsidiary/Advanced Level in Mathematics, Further Mathematics and Pure Mathematics – Sample Assessment Materials (SAMs) – Issue 3 – June 2018 © Pearson Education Limited 2018