Pure Mathematics P2 Mark scheme

Questi	on Scheme	Marks
1(a)	$f(x) = x^4 + x^3 + 2x^2 + ax + b$	
	Attempting $f(1)$ or $f(-1)$	M1
	$f(1) = 1 + 1 + 2 + a + b = 7$ or $4 + a + b = 7 \implies a + b = 3$	A1*
	(as required) AG	cso
		(2)
(b)	Attempting $f(-2)$ or $f(2)$	M1
	$f(-2) = 16 - 8 + 8 - 2a + b = -8 \{ \Rightarrow -2a + b = -24 \}$	A1
	Solving both equations simultaneously to get as far as $a =$ or $b =$	dM1
	Any one of $a = 9$ or $b = -6$	A1
	Both $a = 9$ and $b = -6$	A1
		(5)
		(7marks)
Alterna M1: A1: (b)	the result given on the paper as $a + b = 3$. Note that the answer is given in part (a) ative For long division by $(x - 1)$ to give a remainder in <i>a</i> and <i>b</i> which is independent of Or {Remainder = } $b + a + 4 = 7$ leading to the correct result of $a + b = 3$ (answer	of x .
M1:	Attempting either $f(-2)$ or $f(2)$.	
A1:	correct underlined equation in a and b; e.g. $16-8+8-2a+b=-8$ or equivale	nt,
	e.g. $-2a + b = -24$.	
	An attempt to eliminate one variable from 2 linear simultaneous equations in a and Note that this mark is dependent upon the award of the first method mark.	ıd b.
A1:	Any one of $a = 9$ or $b = -6$.	
A1:	Both $a = 9$ and $b = -6$ and a correct solution only.	
Alterna		
	For long division by $(x + 2)$ to give a remainder in <i>a</i> and <i>b</i> which is independent of	of x .
A1:	For {Remainder =} $\underline{b-2(a-8)=-8}$ { $\Rightarrow -2a+b=-24$ }.	
	Then dM1A1A1 are applied in the same way as before.	

Question	Sche	me	Marks				
2(a)	$S_{\infty} = \frac{20}{1-\frac{7}{2}}; = 160$	Use of a correct S_{∞} formula	M1				
	$b_{\infty} = 1 - \frac{7}{8}$, 100	160	A1				
			(2)				
(b)	$S_{12} = \frac{20(1 - (\frac{7}{8})^{12})}{1 - \frac{7}{8}}; = 127.77324$ $= 127.8 (1 \text{ dp})$	M1: Use of a correct S_n formula with $n = 12$ (condone missing brackets around $\frac{7}{8}$) A1: awrt 127.8	M1 A1				
			(2)				
(c)	$160 - \frac{20(1 - (\frac{7}{8})^N)}{1 - \frac{7}{8}} < 0.5$	Applies S_N (GP only) with $a = 20$, $r = \frac{7}{8}$ and "uses" 0.5 and their S_{∞} at any point in their working.	M1				
	$160\left(\frac{7}{8}\right)^{N} < (0.5) \text{ or } \left(\frac{7}{8}\right)^{N} < \left(\frac{0.5}{160}\right)$	Attempt to isolate $+160\left(\frac{7}{8}\right)^{N}$ or $\left(\frac{7}{8}\right)^{N}$	dM1				
	$N\log\left(\frac{7}{8}\right) < \log\left(\frac{0.5}{160}\right)$	Uses the law of logarithms to obtain an equation or an inequality of the form $N \log \left(\frac{7}{8}\right) < \log \left(\frac{0.5}{\text{their } S_{\infty}}\right)$ or $N > \log_{0.875} \left(\frac{0.5}{\text{their } S_{\infty}}\right)$	M1				
	$N > \frac{\log\left(\frac{0.5}{160}\right)}{\log\left(\frac{7}{8}\right)} = 43.19823$ $\Rightarrow N = 44$ cso	$N = 44 \text{ (Allow } N \ge 44 \text{ but no } N > 44$	A1 cso				
	An incorrect inequality statement at an the final mark. Some candidates do inequality is reversed in the final line o gain full marks for using =, as long as n	not realise that the direction of the of their solution. BUT it is possible to					
			(4)				
	Alternative: Trial & Improvement M	lethod in (c):					
	Attempts $160 - S_N$ or S_N with at least one value for $N > 40$						
	Attempts $160 - S_N$ or S_N		dM1				
	For evidence of examining $160 - S_N$ or S_N for both $N = 43$ and $N = 44$ we both values correct to 2 DP Eg: $160 - S_{43} = awrt \ 0.51 \ and \ 160 - S_{44} = awrt \ 0.45 \ or$ $S_{43} = awrt \ 159.49 \ and \ S_{44} = awrt \ 159.55$						
	N =		A1 cso				
	Answer of <i>N</i> = 44 only with no working scores no marks						
			(4)				
			8 marks)				

Quest	tion						Scl	heme				Marks
3 (a	ı)		x y		0	0.25 1.251	0.5 1.494	0.75 1.741	1 2			B1 B1
(b))	1										(2) B1 M1
)	$\frac{1}{2}$	×0.25,	{(1+2)	+2(1.251	+ 1.494 ·	+ 1.741)}	o.e.			A1ft
									= 1	.4965		Al
												(4)
(c))		 D U In 	ecre se r	ease th nore ti ase the	ason inclu le width o rapezia e number more deci	f the strip of strips					B1
												(1)
Notes:											(7 marks)
(a) B1: B1: (b) B1: M1:	For For Need Requaddr from	1.74 d $\frac{1}{2}$ uires tiona	1 (1.74 of 0.25 s first b al valu	or oraci es f	0.125 ket to rom th ket this	o.e. contain fi ne three in s may be	rst plus la the table regarded	. If the on as a slip a	and seco ly mistal nd M m	ond bracket ke is to omi ark can be	to include it one value allowed (A used in bra	n
A1ft: A1:	x val Follo Acce spec Sepa A1ft	lues ows ept 1 ial c arate	instead their a 4965, ase be trapez	d of nsw 1.4 low tia r	<i>y</i> valu vers to 497, or follow nay be rect) e.	nes part (a) a 1.50 only wing 1.74 e used: B1 g. 0.125(nd is for after con in table for 0.12 1+ 1.251	{correct e: rrect work). 5, M1 for	xpression (No fo $\frac{1}{2}h(a+b)$ (1.251+1)	n} llow throug) used 3 or .494) + 0.1	gh except o 4 times (an 125(1.741 +	ne d

				Scheme		Marks	
A sol	ution ba	used are	ound a tab	le of resul	ts		
ľ	1	n^2	$n^2 + 2$				
1		1	3	Odd			
2		4	6	Even			
3	3	9	11	Odd			
4	1	16	18	Even			
5	5	25	27	Odd			
6	5	36	38	Even			
					2		
When	n <i>n</i> is od	ld, n^2 is	s odd (odd	\times odd = o	ld) so $n^2 + 2$ is also odd	M1	
			rs n , $n^2 + 2$ e 4 times ta		ld and so cannot be divisible by 4 n)	A1	
	n <i>n</i> is ev ple of 4	ven, n^2	is even an	d a multip	le of 4, so $n^2 + 2$ cannot be a	M1	
-			-		for both of the cases above plus a be divisible by 4"	A1*	
						(4)	
Alter	native -	(algeb	raic) proof	•			
If <i>n</i> is	s even, <i>n</i>	n=2k, s	so $\frac{n^2 + 2}{4} =$	$=\frac{\left(2k\right)^2+2}{4}$	$=\frac{4k^2+2}{4}=k^2+\frac{1}{2}$	M1	
If <i>n</i> is odd, $n = 2k+1$, so $\frac{n^2+2}{4} = \frac{(2k+1)^2+2}{4} = \frac{4k^2+4k+3}{4} = k^2+k+\frac{3}{4}$							
For a partial explanation stating that							
• either of $k^2 + \frac{1}{2}$ or $k^2 + k + \frac{3}{4}$ are not a whole numbers.							
 with some valid reason stating why this means that n² +2 is not a multiple of 4. 						A1	
Full proof with no errors or omissions. This must include							
• The conjecture							
•			-		th even and odd numbers	A1*	
• A full explanation stating why, for all n , $n^2 + 2$ is not divisible by 4							
						(4)	
					(1	4 mark	

Question		Scheme		Marks	
5(a)	$(S =)a + (a + d) + \dots + [a + (n - 1)d]$	B1: requires at least 3 terms, must include first and last terms, an adjacent term and dots!	B1		
	$(S =)[a+(n-1)d] + \dots + a$	M1: for reversing series (dots needed)	M1		
	$2S = [2a + (n-1)d] + \dots + [2a + (n-1)d]$	dM1: for adding, must have $2S$ and be a genuine attempt. Either line is sufficient. Dependent on 1^{st} M1.	dM1		
	2S = n[2a + (n-1)d]	(NB –Allow first 3 marks for use of <i>l</i> for last term but as given for final mark)			
	$S = \frac{n}{2} \left[2a + (n-1)d \right] \cos \alpha$			A1	
				(4)	
(b)	$600 = 200 + (N-1)20 \implies N = \dots$		600 with a <u>correct</u> formula in an t to find N .	M1	
	N = 21	cso		A1	
				(2)	
(c)		or an AF	' first:		
	$S = \frac{21}{2} (2 \times 200 + 20 \times 20) \text{ or}$ $\frac{21}{2} (200 + 600)$ M1: Use of correct sum formula with their integer $n = N$ or $N - 1$ from part (b) where $3 < N < 52$ and $a = 200$ and d				
	$S = \frac{20}{2} (2 \times 200 + 19 \times 20)$ or		M1A1		
	$S = \frac{1}{2} (2 \times 200 + 19 \times 20) \text{ or}$ $\frac{20}{2} (200 + 580)$ M1: Use of correct sum formula with their integer $n = N$ or $N - 1$ from part (b) where $3 < N < 52$ and $a = 200$ and d				
	(= 8400 or 7800)	= 20.			
	Then for the constant terms:				
	$600 \times (52 - "N") (= 18600)$	M1: 60 < k < 5	M1		
		through	correct un-simplified follow n expression with their k ent with n so that 52	A1ft	
	So total is 27000				
	There are no marks in (c) for just finding S52				
				(5)	
			(1	1 marks)	

Questio	n S	Scheme	Marks			
6(i)	$\log_2\left(\frac{2x}{5x+4}\right) = -3 \text{or } \log_2\left(\frac{5x}{2}\right)$	$\left(\frac{x+4}{x}\right) = 3$ or $\log_2\left(\frac{5x+4}{x}\right) = 4$	M1			
	$\left(\frac{2x}{5x+4}\right) = 2^{-3} \text{or} \left(\frac{5x+4}{2x}\right)$	$\frac{1}{2} = 2^3 \text{or}\left(\frac{5x+4}{x}\right) = 2^4$	M1			
	$16x = 5x + 4 \implies x = (\text{depends on M})$	s and must be this equation or equiv)	dM1			
	$x = \frac{4}{11}$ or exact recurring decimal 0.36 after correct work					
	Alternative					
	$\log_2(2x) +$	$3 = \log_2(5x + 4)$				
	So $\log_2(2x) + \log_2(8) = \log_2(5x + 4)$	earns 2^{nd} M1 (3 replaced by $\log_2 8$)	2 nd M1			
	Then $\log_2(16x) = \log_2(5x + 4)$ earns	Then $\log_2(16x) = \log_2(5x + 4)$ earns 1 st M1 (addition law of logs)				
	Then final M1 A1 as before	Then final M1 A1 as before				
			(4)			
(ii)	$\log_a y + \log_a 2^3 = 5$		M1			
	$\log_a 8y = 5$	Applies product law of logarithms	dM1			
	$y = \frac{1}{8}a^5 \qquad \mathbf{cso}$	$y = \frac{1}{8}a^5 \qquad \mathbf{cso}$	A1			
			(3)			
			(7 marks)			
Notes:						
i M1: F dM1: C	 Applying the subtraction or addition law of logarithms correctly to make two log terms into one log term. For RHS of either 2⁻³, 2³, 2⁴ or log₂(¹/₈), log₂ 8 or log₂16 i.e. using connection between log base 2 and 2 to a power. This may follow an error. Use of 3² is M0 M1: Obtains correct linear equation in <i>x</i>. usually the one in the scheme and attempts <i>x</i> = 					
(ii) M1: A dM1: (Applies power law of logarithms to replace $3\log_a 2$ by $\log_a 2^3$ or $\log_a 8$ (Should not be following M0) Uses addition law of logs to give $\log_a 2^3 y = 5$ or $\log_a 8y = 5$					

	Scheme	Marks
7(a)	Obtain $(x \pm 10)^2$ and $(y \pm 8)^2$	M1
	(10, 8)	A1
		(2)
(b)	See $(x \pm 10)^2 + (y \pm 8)^2 = 25 (= r^2)$ or $(r^2 =) "100" + "64" - 139$	M1
	r = 5*	A1
		(2)
(c)	Substitute $x = 13$ into the equation of circle and solve quadratic to give $y =$	M1
	e.g. $x = 13 \implies (13 - 10)^2 + (y - 8)^2 = 25 \implies (y - 8)^2 = 16$	A1 A1
	so $y = 4$ or 12	
	N.B. This can be attempted via a 3, 4, 5 triangle so spotting this and achieving one value for y is M1 A1. Both values scores M1 A1 A1	
		(3)
(d)	$OC = \sqrt{10^2 + 8^2} = \sqrt{164}$	M1
	Length of tangent = $\sqrt{164 - 5^2} = \sqrt{139}$	M1 A1
		(3)
		10 marks)
	tains $(x \pm 10)^2$ and $(y \pm 8)^2$ May be implied by one correct coordinate (, 8) Answer only scores both marks.	
M1: Ob A1: (10 Alternativ		
M1: Ob A1: (10 Alternativ M1: Ob	(9, 8) Answer only scores both marks. re: Method 2: From $x^2 + y^2 + 2gx + 2fy + c = 0$ centre is $(\pm g, \pm f)$	
M1: Ob A1: (10 Alternativ M1: Ob A1: Cen (b) M1: For All	(a) Answer only scores both marks. re: Method 2: From $x^2 + y^2 + 2gx + 2fy + c = 0$ centre is $(\pm g, \pm f)$ tains $(\pm 10, \pm 8)$	tify r=
M1: Ob A1: (10 Alternativ M1: Ob A1: Cen (b) M1: For All	(a) Answer only scores both marks. (b) Answer only scores both marks. (c) Method 2: From $x^2 + y^2 + 2gx + 2fy + c = 0$ centre is $(\pm g, \pm f)$ tains $(\pm 10, \pm 8)$ (c) the true is $(-g, -f)$, and so centre is $(10, 8)$. (c) a correct method leading to $r =$, or $r^2 =$ (c) w "100"+"64"-139 or an attempt at using $(x \pm 10)^2 + (y \pm 8)^2 = r^2$ form to ident (c) This is a printed answer, so a correct method must be seen.	tify r=
M1: Ob A1: (10 Alternativ M1: Ob A1: Cer (b) M1: For All A1*: r = Alternativ (b)	(a) Answer only scores both marks. (b) Answer only scores both marks. (c) Method 2: From $x^2 + y^2 + 2gx + 2fy + c = 0$ centre is $(\pm g, \pm f)$ tains $(\pm 10, \pm 8)$ (c) the true is $(-g, -f)$, and so centre is $(10, 8)$. (c) a correct method leading to $r =$, or $r^2 =$ (c) w "100"+"64"-139 or an attempt at using $(x \pm 10)^2 + (y \pm 8)^2 = r^2$ form to ident (c) This is a printed answer, so a correct method must be seen.	tify r=
M1: Ob A1: (10 Alternativ M1: Ob A1: Cer (b) M1: For All A1*: r = Alternativ (b) M1: Att	(a) Answer only scores both marks. re: <i>Method 2:</i> From $x^2 + y^2 + 2gx + 2fy + c = 0$ centre is $(\pm g, \pm f)$ tains $(\pm 10, \pm 8)$ intre is $(-g, -f)$, and so centre is $(10, 8)$. r a correct method leading to $r =$, or $r^2 =$ ow "100"+"64"-139 or an attempt at using $(x \pm 10)^2 + (y \pm 8)^2 = r^2$ form to idem 5 This is a printed answer, so a correct method must be seen. re:	tify <i>r</i> =
M1: Ob A1: (10) Alternative M1: Ob M1: Ob A1: Cer (b) M1: For All A1*: $r =$ Alternative (b) M1: Attractive Alternative (b) M1: Attractive M1: Attractive Alternative M1: Attractive Alternative M1: Attractive Alternative M1: Subtractive Alternative M1: Subtractive Subtractive	(a) Answer only scores both marks. (b) Answer only scores both marks. (c) Method 2: From $x^2 + y^2 + 2gx + 2fy + c = 0$ centre is $(\pm g, \pm f)$ tains $(\pm 10, \pm 8)$ (c) the transformation of the	
M1: Ob A1: (10) Alternative M1: Ob M1: Ob A1: Cert (b) M1: For All A1*: r = Alternative (b) M1: Atternative (b) M1: Atternative (b) M1: Atternative (b) M1: Atternative (b) M1: Atternative (b) M1: Atternative (c) M1: Subternative (c) M1: Subternative Subternative Subternative (c) M1: Subternative (c) (c) <th(< td=""><td>A system only scores both marks. re: Method 2: From $x^2 + y^2 + 2gx + 2fy + c = 0$ centre is $(\pm g, \pm f)$ tains $(\pm 10, \pm 8)$ intre is $(-g, -f)$, and so centre is $(10, 8)$. r a correct method leading to $r =$, or $r^2 =$ ow "100"+"64"-139 or an attempt at using $(x \pm 10)^2 + (y \pm 8)^2 = r^2$ form to iden 5 This is a printed answer, so a correct method must be seen. re: empts to use $\sqrt{g^2 + f^2 - c}$ or $(r^2 =)$"100"+"64"-139 5 following a correct method.</td><td></td></th(<>	A system only scores both marks. re: Method 2: From $x^2 + y^2 + 2gx + 2fy + c = 0$ centre is $(\pm g, \pm f)$ tains $(\pm 10, \pm 8)$ intre is $(-g, -f)$, and so centre is $(10, 8)$. r a correct method leading to $r =$, or $r^2 =$ ow "100"+"64"-139 or an attempt at using $(x \pm 10)^2 + (y \pm 8)^2 = r^2$ form to iden 5 This is a printed answer, so a correct method must be seen. re: empts to use $\sqrt{g^2 + f^2 - c}$ or $(r^2 =)$ "100"+"64"-139 5 following a correct method.	

Question 7 notes continued

(d)

- M1: Uses Pythagoras' Theorem to find length OC using their (10,8)
- M1: Uses Pythagoras' Theorem to find OX. Look for $\sqrt{OC^2 r^2}$
- A1: $\sqrt{139}$ only

	tion Scheme	Marks
8 (a	· ·	B1
	and in C_2 : $y = x^3 = 1^3 = 1 \implies (1, 1)$ lies on both curves.	
	$10x - x^2 - 8 = x^3$	(1)
(b)	$ 10x - x^2 - 8 = x^3 x^3 + x^2 - 10x + 8 = 0 $	B1
	$\frac{x + x - 10x + 8 - 0}{(x - 1)(x^2 + 2x - 8) = 0}$	M1 A1
	$\frac{(x-1)(x+2x-3)=0}{(x-1)(x+4)(x-2)=0} \qquad x=2$	MI AI MI AI
	$(x - 1)(x + 1)(x - 2) = 0 \qquad x - 2 \qquad (2, 8)$	A1
		(6)
(c)	$\int \{ (10x - x^2 - 8) - x^3 \} dx$	M1
	$=5x^2 - \frac{x^3}{3} - 8x - \frac{x^4}{4}$	M1 A1
	Using limits 2 and 1: $\left(20 - \frac{8}{3} - 16 - 4\right) - \left(5 - \frac{1}{3} - 8 - \frac{1}{4}\right)$	M1
	$=\frac{11}{12}$	A1
		(5)
Notes:		(12 marks)
(a) B1:		
(a) B1: (b) B1: M1:	Substitutes $x =$ nto both $y = 10x - x^2 - 8$ and $y = x^3$ AND achieves $y = 1$ in both. Sets equations equal to each other and proceeds to $x^3 + x^2 - 10x + 8 = 0$ Divides by $(x - 1)$ to form a quadratic factor. Allow any suitable algebraic method in division or inspection.	12 marks)
(a) B1: (b) B1: M1: A1:	Substitutes $x =$ nto both $y = 10x - x^2 - 8$ and $y = x^3$ AND achieves $y = 1$ in both. Sets equations equal to each other and proceeds to $x^3 + x^2 - 10x + 8 = 0$ Divides by $(x - 1)$ to form a quadratic factor. Allow any suitable algebraic method	12 marks)
(a) B1: (b) B1: M1: A1: A1: A1:	Substitutes $x =$ nto both $y = 10x - x^2 - 8$ and $y = x^3$ AND achieves $y = 1$ in both. Sets equations equal to each other and proceeds to $x^3 + x^2 - 10x + 8 = 0$ Divides by $(x - 1)$ to form a quadratic factor. Allow any suitable algebraic method in division or inspection. Correct quadratic factor $(x^2 + 2x - 8)$ For factorising of their quadratic factor. Achieves $x = 2$	12 marks)
(a) B1: (b) B1: M1: A1: A1: A1: A1:	Substitutes $x =$ nto both $y = 10x - x^2 - 8$ and $y = x^3$ AND achieves $y = 1$ in both. Sets equations equal to each other and proceeds to $x^3 + x^2 - 10x + 8 = 0$ Divides by $(x - 1)$ to form a quadratic factor. Allow any suitable algebraic method is division or inspection. Correct quadratic factor $(x^2 + 2x - 8)$ For factorising of their quadratic factor.	12 marks)
(a) B1: (b) B1: M1: A1: A1: A1:	Substitutes $x =$ nto both $y = 10x - x^2 - 8$ and $y = x^3$ AND achieves $y = 1$ in both. Sets equations equal to each other and proceeds to $x^3 + x^2 - 10x + 8 = 0$ Divides by $(x - 1)$ to form a quadratic factor. Allow any suitable algebraic method in division or inspection. Correct quadratic factor $(x^2 + 2x - 8)$ For factorising of their quadratic factor. Achieves $x = 2$	12 marks)
(a) B1: (b) B1: M1: A1: A1: A1: (c)	Substitutes $x =$ nto both $y = 10x - x^2 - 8$ and $y = x^3$ AND achieves $y = 1$ in both. Sets equations equal to each other and proceeds to $x^3 + x^2 - 10x + 8 = 0$ Divides by $(x - 1)$ to form a quadratic factor. Allow any suitable algebraic method in division or inspection. Correct quadratic factor $(x^2 + 2x - 8)$ For factorising of their quadratic factor. Achieves $x = 2$	12 marks)
(a) B1: (b) B1: M1: A1: A1: A1: A1: A1:	Substitutes $x =$ nto both $y = 10x - x^2 - 8$ and $y = x^3$ AND achieves $y = 1$ in both. Sets equations equal to each other and proceeds to $x^3 + x^2 - 10x + 8 = 0$ Divides by $(x - 1)$ to form a quadratic factor. Allow any suitable algebraic method idivision or inspection. Correct quadratic factor $(x^2 + 2x - 8)$ For factorising of their quadratic factor. Achieves $x= 2$ Coordinates of $B = (2, 8)$	12 marks)

Question 8 notes continued				
M1:	For using the limits "2" and 1 in their integrated expression. If separate areas have been attempted, "2" and 1 must be used in both integrated expressions.			
A1:	For $\frac{11}{12}$ or exact equivalent.			