

Cambridge O Level

	CANDIDATE NAME		
	CENTRE NUMBER	CANDIDATE NUMBER	
*			
μ	CHEMISTRY		5070/21
6 L	Paper 2 Theory	,	May/June 2020
00 00			1 hour 30 minutes
* 8 1 7 9 8 9 8 6 8 2	You must answe	er on the question paper.	
N	No additional m	naterials are needed.	

INSTRUCTIONS

- Section A: answer **all** questions. •
- Section B: answer three questions. •
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. •
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided. •
- Do not use an erasable pen or correction fluid. •
- Do **not** write on any bar codes. •
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 75. •
- The number of marks for each question or part question is shown in brackets []. •
- The Periodic Table is printed in the question paper. •

This document has 20 pages. Blank pages are indicated.

Section A

Answer **all** the questions in this section in the spaces provided.

The total mark for this section is 45.

1 Choose from the following oxides to answer the questions.

calcium oxide

carbon monoxide

copper(II) oxide

nitrogen dioxide

nitrogen monoxide

silicon dioxide

sulfur dioxide

water

zinc oxide

Each oxide may be used once, more than once or not at all.

Which oxide:

(a)	is used as a food preservative	
		[1]
(b)	is amphoteric	
		[1]
(c)	has a molecule that contains only 15 protons	
		[1]
(d)	has a high melting point because it has a giant covalent structure	
		[1]
(e)	reacts with dilute sulfuric acid to make a blue solution?	
		[1]
	[Tota	: 5]

2 Part of the reactivity series is shown.

Par	art of the reactivity series is shown.	
	calcium more reactive	
	aluminium	
	manganese	
	zinc less reactive	
(a)	Predict the names of the products formed when manganese reacts with dilute hydrochloric acid.	
		[1]
(b)	A sample of manganese(II) carbonate, MnCO ₃ , is heated strongly.	
	Construct the equation for this reaction.	
		[1]
(c)	Powdered manganese is added to aqueous zinc sulfate to form aqueous manganese(II) sulfate, MnSO ₄ .	
	Construct an ionic equation, with state symbols, for this reaction.	[2]
(d)		[~]
	Describe the colour change during this reaction.	
		[1]
(e)	Aluminium is extracted by the electrolysis of aluminium oxide dissolved in molten cryolite.	
	(i) Write the electrode equation for the formation of aluminium atoms at the cathode.	
		[1]
	(ii) Write the electrode equation for the formation of oxygen molecules at the anode.	
		[1]
(f)	State one advantage of recycling aluminium.	
		[1]
	[Total	: 8]

3 The equation for the decomposition of hydrogen peroxide is shown.

$$\rm 2H_2O_2 \rightarrow \rm 2H_2O + O_2$$

A sample containing 1.00 mol of hydrogen peroxide is completely decomposed.

This sample releases 98.0 kJ of heat energy.

(a) Calculate the heat energy released when 680 g of hydrogen peroxide is completely decomposed.

heat energy released kJ [2]

(b) Use ideas about bond breaking and bond forming to explain why the decomposition of hydrogen peroxide is exothermic.

.....[2]

(c) The energy profile diagram for the decomposition of hydrogen peroxide is shown.

- relative melting boiling molecular name structure point point /°C /°C mass methyl ethanoate CH₃COOCH₃ 74 -98 57 CH₃COOCH₂CH₃ 88 -84 ethyl ethanoate 77 CH₃COOCH₂CH₂CH₃ 102 -95 102 propyl ethanoate CH₃COOCH₂CH₂CH₂CH₃CH₃ butyl ethanoate 116 -78126 CH₃COOCH₂CH₂CH₂CH₂CH₃ 130 -71 148 pentyl ethanoate
- 4 The table shows some properties of five esters.

(a) These esters are part of a homologous series.

State **two** characteristics of a homologous series.

1. 2. [2]

(b) The next member of the homologous series is hexyl ethanoate.

Explain why it is more difficult to predict the melting point than the boiling point of hexyl ethanoate.

......[1] (c) At 25 °C ethyl ethanoate is a liquid. Explain how the data in the table shows this.

.....[1]

......[1]

6

(d) State one use for an ester.

(e) Propyl ethanoate is prepared by the reaction between ethanoic acid and propanol.

 $\mathsf{CH}_3\mathsf{CO}_2\mathsf{H} + \mathsf{CH}_3\mathsf{CH}_2\mathsf{CH}_2\mathsf{OH} \rightleftharpoons \mathsf{CH}_3\mathsf{COOCH}_2\mathsf{CH}_2\mathsf{CH}_3 + \mathsf{H}_2\mathsf{O}$

(i) Calculate the maximum mass of propyl ethanoate that can be made from 7.20g of ethanoic acid and excess propanol.

Give your answer to three significant figures.

	mass of propyl ethanoate g [2]
(ii)	The concentration of ethanoic acid is increased.
	State and explain, in terms of particles, what happens to the rate of the forward reaction.
	[3]
(iii)	The water formed in the reaction is removed.
	State and explain what happens to the position of the equilibrium.
	[2]
	[Total: 12]

5 Hydrochloric acid, HCl, reacts with barium hydroxide, $Ba(OH)_2$, as shown.

$$2HCl(aq) + Ba(OH)_2(aq) \rightarrow BaCl_2(aq) + 2H_2O(I)$$

A sample of 25.0 cm^3 of $0.0500 \text{ mol}/\text{dm}^3 \text{ Ba(OH)}_2$ is placed in a beaker.

Dilute HCl is added slowly, from a burette, to the $Ba(OH)_2(aq)$ in the beaker.

A pH probe is used to measure the pH of the solution in the beaker until a total of 40.0 cm^3 of dilute HC*l* is added.

The table shows how the pH of the solution in the beaker changes.

volume of dilute HCl added/cm ³	pH of the solution in the beaker
0.0	13.0
5.0	12.9
10.0	12.5
15.0	11.6
20.0	7.0
25.0	3.0
30.0	1.6
35.0	1.1
40.0	0.9

(a) Explain, in terms of the ions present, why the pH of the solution in the beaker changes from 13.0 to 0.9.

(b) Use the data in the table to state the volume of dilute HC*l* that just neutralises all of the sample of Ba(OH)₂(aq).

volume of dilute HCl cm³ [1]

(c) Use your answer to (b) to calculate the concentration, in mol/dm³, of the dilute HCl.

concentration of dilute HC1 mol/dm³ [3]

[Total: 6]

6 The structures of two carboxylic acids are shown.

		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		ethanoic acid carboxylic acid B
(a)	An	isomer of carboxylic acid B has the name methylpropanoic acid.
	(i)	What is the name of carboxylic acid B ?
	(ii)	What is the meaning of the term <i>isomer</i> ?
		[1]
(b)	Vine	egar contains ethanoic acid.
	Des	scribe the formation of vinegar from ethanol.
(c)	Eth	anoic acid reacts with calcium carbonate.
	(i)	Give the formula of the calcium salt formed in this reaction.
	(ii)	Name the other two products formed in this reaction.
		and [1]
		[Total: 6]

Section B

11

Answer three questions from this section in the spaces provided.

The total mark for this section is 30.

7	Car	bon	dioxide is a colourless gas found in air.	
	(a)	The	percentage of carbon dioxide in the air is increasing.	
		Sta	te one environmental problem caused by this increase.	
			[1]
	(b)	Car	bon dioxide is a product of the complete combustion of octane, C ₈ H ₁₈ .	
		Cor	nstruct the equation for this reaction.	
			[2	2]
	(c)	Fer	mentation of glucose produces carbon dioxide.	
		(i)	Give the equation for the fermentation of glucose.	
			[1]
		(ii)	State two essential conditions needed for fermentation.	
			[2	2]
	(d)	Wh	en warmed, solid carbon dioxide changes directly into a gas. It does not become a liquid	ł.
			e the kinetic particle theory to describe the changes in movement and arrangement of particles during this change of state.	of
			[3]
	(e)	Exp	lain why solid carbon dioxide does not conduct electricity.	
			[1]
			[Total: 10)]

Thi	is question is about the chlorides of the elements in Period 3.	
(a)	Sta	te the electronic configuration of the positive ion in sodium chloride, NaCl.
		[1]
(b)	Ma	gnesium chloride crystals can be prepared by reacting an insoluble base with an acid.
	(i)	Name an insoluble base and the acid that can be used.
		insoluble base
		acid
		[1]
	(ii)	Describe the essential practical details for the preparation of pure magnesium chloride crystals.
		[3]
(c)	Anł	nydrous aluminium chloride contains 20.2% by mass of aluminium.

(i) Show that the empirical formula for anhydrous aluminium chloride is $AlCl_3$.

[2]

8

(ii) A sample of anhydrous aluminium chloride has a mass of 2.34 g.

The sample contains 0.00876 mol of anhydrous aluminium chloride.

Calculate the relative molecular mass and give the molecular formula for anhydrous aluminium chloride.

relative molecular mass	
molecular formula	
	[2]
Silicon(IV) chloride, SiC l_4 , has a simple molecular structure.	
Predict one physical property of silicon(IV) chloride at room temperature.	
	[1]
	[Total: 10]
	molecular formula Silicon(IV) chloride, SiC l_4 , has a simple molecular structure. Predict one physical property of silicon(IV) chloride at room temperature.

- **9** Iron is a transition element.
 - (a) State two physical properties of iron that are typical of a transition element.
 - 1.

 2.

[2]

- (b) Name an industrial process that uses iron as a catalyst.
 -[1]
- (c) Iron(II) sulfate thermally decomposes to form iron(III) oxide, sulfur dioxide and sulfur trioxide.

$$2FeSO_4(s) \rightarrow Fe_2O_3(s) + SO_2(g) + SO_3(g)$$

(i) Explain how the equation shows that this reaction involves oxidation.

......[1]

(ii) A sample of 6.08 g of FeSO₄ is heated until all the sample has thermally decomposed.

Calculate the volume of sulfur dioxide formed, $SO_2(g)$, in dm³, measured at room temperature and pressure.

volume of sulfur dioxide dm³ [3]

(d) Iron(III) oxide reacts with dilute sulfuric acid to make iron(III) sulfate, Fe₂(SO₄)₃.
Construct the equation for this reaction.
[1]
(e) Describe a chemical test that can be used to distinguish between aqueous solutions of iron(II) sulfate and iron(III) sulfate.
chemical test
result with iron(II) sulfate
[2]

[Total: 10]

- **10** Fractional distillation and cracking are important processes in the conversion of petroleum (crude oil) into useful substances.
 - (a) Complete the sentence about petroleum (crude oil).

Choose from the list.

	an alloy	a compound	an element	
	a mixture	a polymer	a salt	
	Petroleum (crude oil) is		of hydrocarbons.	[1]
(b)	Fractional distillation se and naphtha.	parates petroleum (crude oil) into fractions such as paraffin (keroser	ıe)

Give one use for the paraffin (kerosene) fraction.

......[1]

(c) The naphtha fraction is used as a chemical feedstock.

One of the hydrocarbons in naphtha has the molecular formula $C_{10}H_{22}$.

The flow chart shows some compounds that can be made from $C_{10}H_{22}$.

(i) C_3H_8 is an alkane and C_3H_6 is an alkene.

Explain why, in terms of their general formulae, C_3H_8 is an alkane and C_3H_6 is an alkene.

(ii)	In the presence of uv light chlorine reacts with C_3H_8 .	
	Two of the products formed are HCl and C_3H_7Cl .	
	What type of reaction takes place when C ₃ H ₈ reacts with chlorine?	
	Give the formula of one other product of this reaction.	
		 [2]
(iii)	Describe the colour change when C_3H_6 reacts with bromine.	[2]
		[1]
(d) (i)	Suggest a possible structure for C ₄ H ₈ .	

[1]

(ii) Draw the partial structure of poly(butene) that shows at least two repeat units.

[2]

[Total: 10]

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

ġ
÷
ure (r.
ar.
ě
d
pu
g
are
eratur
ē
μ
ter
Ε
ō
ţ
ື
24 dm 3 at room temperature and press
4 0
Ň
<u>.</u> .
as
5 S
Ű.
Ę
ð
mol
F
ne
fo
blume of one mole of any gas is 24 dn
ne
In
20
e
È

	III	He ^{bling}	4	10	Ne	neon 20	18	Ar	argon 40	36	Кr	krypton 84	54	Xe	xenon 131	86	Rn	radon -									
Group	NII N			6	ш	fluorine 19	17	Cl	chlorine 35.5	35	Br	bromine 80	53	Ι	iodine 127	85	At	astatine -				71	Lu	lutetium 175	103	Ļ	lawrencium _
	5			8	0	oxygen 16	16	S	sulfur 32	34	Se	selenium 79	52	Те	tellurium 128	84	Ро	polonium –	116	2	livermorium –	-		ytterbium 173			nobelium
	>			7	z	nitrogen 14	15	٩	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	Ē	bismuth 209				69	Tm	thulium 169	101	Md	mendelevium -
	≥			9	U	carbon 12	14	Si	silicon 28	32	Ge	germanium 73	50	Sn	tin 119	82	Pb	lead 207	114	Γl	flerovium -			erbium 167			
	≡			5	В	boron 11	13	Al	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11					67	Ч	holmium 165	66	Еs	einsteinium –
										30	Zn	zinc 65	48	Cd	cadmium 112	80	Hg	mercury 201	112	Cn	copernicium -	99	D	dysprosium 163	98	ç	califomium -
										29	Cu	copper 64	47	Ag	silver 108	52	Au	gold 197				65	Тb	terbium 159	97	Bk	berkelium –
										28	ÏZ	nickel 59	46	Ъd	palladium 106	78	Ę	platinum 195	110	Ds	darmstadtium -	64	Gd	gadolinium 157			
										27	ပိ	cobalt 59	45	Rh	rhodium 103	77	Ir	iridium 192	109	Mt	meitnerium -	63	Еu	europium 152	95	Am	americium -
		← T a	1							26	Ъe	iron 56	44	Ru	ruthenium 101	76	Os	osmium 190	108	Hs	hassium -	62	Sm	samarium 150	94	Pu	plutonium –
							_			25	Mn	manganese 55	43		technetium -	75	Re	rhenium 186	107	Bh	bohrium –	61	Pm	promethium -	93	Np	neptunium -
				atomic number	lodi	ass				24	ບັ	chromium 52	42	Мо	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -	60	Nd	neodymium 144	92	⊃	uranium 238
			Key		atomic symbol	name relative atomic mass				23	>	vanadium 51	41	ЧN	niobium 93	73	Ца	tantalum 181	105	Db	dubnium –	59	Pr	praseodymium 141	91	Ра	protactinium 231
						Le				22	Ħ	titanium 48	40	Zr	zirconium 91	72	Η	hafnium 178	104	Rf	rutherfordium -	58	Ce	cerium 140	06	Тh	thorium 232
										21	Sc	scandium 45	39	≻	yttrium 89	57-71	lanthanoids		89-103	actinoids		57	La	lanthanum 139	68	Ac	actinium –
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Sr	strontium 88	56	Ba	barium 137	88	Ra	radium -		sids			(0	
	_			e	:	lithium 7	5	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	л Ц	francium -		lanthanoids			actinoids	

The Periodic Table of Elements

5070/21/M/J/20