

Cambridge O Level

CANDIDATE NAME		
CENTRE NUMBER		CANDIDATE NUMBER
CHEMISTRY		5070/22
Paper 2 Theory	1	May/June 2020
		1 hour 30 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Section A: answer all questions.
- Section B: answer three questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

Section A

Answer **all** the questions in this section in the spaces provided.

The total mark for this section is 45.

1 Choose from the following chlorides to answer the questions.

	aluminium chloride
	ammonium chloride
	calcium chloride
	hydrogen chloride
	iron(III) chloride
	silver chloride
	sodium chloride
Eac	ch chloride may be used once, more than once or not at all.
Wh	ich chloride:
(a)	contains a cation with a 2+ charge
	[1]
(b)	reacts with warm aqueous sodium hydroxide to form a gas which turns damp red litmus paper blue
	[1]
(c)	is insoluble in water
	[1]
(d)	has a molecule which has only 18 protons
	[1]
(e)	is a coloured solid at room temperature and pressure?

2 Hydrogen reacts with oxygen as shown in the equation.

 $2H_2(g) + O_2(g) \rightarrow 2H_2O(I)$

A sample containing 1.00 mol of hydrogen, $\rm H_2$, is completely combusted.

This sample releases 286 kJ of heat energy.

(a) Calculate the heat energy released when 25.0 g of hydrogen is completely combusted.

		heat energy released kJ [2]
(b)	Use	e ideas about bond breaking and bond forming to explain why this reaction is exothermic.
(c)		e reaction shown also represents the overall process that occurs within a hydrogen-oxygen cell.
	(i)	Describe one advantage of using a hydrogen-oxygen fuel cell to power a motor vehicle rather than burning gasoline.
		[1]
	(ii)	Complete the equations for the two electrode reactions that happen in a hydrogen-oxygen fuel cell.
		$H_2 \rightarrow \dots + 2e^-$
		$O_2 + 4H^+ + 4e^- \rightarrow \dots$
		[2]

[Total: 7]

3 The table shows some properties of five esters.

name	structure	relative molecular mass	melting point /°C	boiling point / °C
methyl methanoate	HCOOCH ₃	60	-100	32
methyl ethanoate	CH ₃ COOCH ₃	74	-98	57
methyl propanoate	CH ₃ CH ₂ COOCH ₃	88	-88	80
methyl butanoate	CH ₃ CH ₂ CH ₂ COOCH ₃	102	-95	102
methyl pentanoate	CH ₃ CH ₂ CH ₂ CH ₂ COOCH ₃			

- (a) These esters are part of a homologous series.
 - (i) State the relative molecular mass of methyl pentanoate.

......[1]

- (ii) Predict the boiling point of methyl pentanoate
-°C [1]
- (iii) Explain why it is **not** possible to predict the melting point of methyl pentanoate.

.....

......[1]

(b) At 35 °C methyl methanoate is a gas.

Explain how the data in the table shows this.

.....

......[1]

(c) Methyl pentanoate is used to flavour food.Suggest one other use for esters.

......[1]

(d) Methyl propanoate is prepared by the reaction between propanoic acid and methanol.

$$CH_3CH_2CO_2H + CH_3OH \rightleftharpoons CH_3CH_2COOCH_3 + H_2O$$

The forward reaction is exothermic.

(i) Calculate the maximum mass of methyl propanoate that can be made from 11.0g of propanoic acid and excess methanol.

Give the answer to **three** significant figures.

	mass of methyl propanoate g [2]
(ii)	The temperature of the reaction mixture is increased.
	State and explain, in terms of particles, what happens to the rate of the forward reaction.
	[3]
(iii)	The temperature of the reaction mixture is increased.
	State and explain what happens to the position of the equilibrium.
	[Total: 12]

4 Part of the reactivity series is shown.

	magnesium more reactive
	aluminium
	zinc
	chromium
	iron less reactive
(a)	Predict the names of the products formed when chromium reacts with dilute hydrochloric acid.
(1-)	[1]
(b)	Powdered zinc is added to aqueous chromium(III) ions, Cr ³⁺ (aq).
	Construct an ionic equation, with state symbols, for this reaction.
(c)	[2] Explain why aluminium does not react with water.
(d)	Hydrogen peroxide, an oxidising agent, is added to aqueous potassium iodide in a test-tube.
	Describe the colour change seen in the test-tube.
(e)	Chromium is extracted by the reaction of aluminium with chromium(III) oxide, Cr_2O_3 .
	(i) Write the equation for this reaction.
	(ii) Suggest a compound that can reduce chromium(III) oxide to chromium metal.
(f)	[1] State one advantage of recycling metals.
	[1]
	[Total: 9]

BLANK PAGE

5 Sulfuric acid, H_2SO_4 , reacts with sodium hydroxide, NaOH, as shown.

 $\rm H_2SO_4(aq) \ + \ 2NaOH(aq) \ \rightarrow \ Na_2SO_4(aq) \ + \ 2H_2O(I)$

A sample of 25.0 cm 3 of 0.0500 mol/dm 3 $\rm H_2SO_4$ is placed in a beaker.

NaOH(aq) is added slowly, from a burette, to the H_2SO_4 in the beaker.

A pH probe is used to measure the pH of the solution in the beaker until a total of 40.0 cm^3 of NaOH(aq) is added.

The graph shows how the pH of the solution in the beaker changes.

(a) Explain, in terms of the ions present, why the pH of the solution in the beaker changes from 1.0 to 13.0.

- (b) Use the graph to state the volume of NaOH(aq) that just neutralises all of the H_2SO_4 .
 - volume of NaOH(aq) cm³ [1]
- (c) Use your answer to (b) to calculate the concentration, in mol/dm³, of the NaOH(aq).

concentration of NaOH(aq) mol/dm³ [3]

[Total: 6]

6 The structures of two alcohols are shown.

- (a) What is the name of alcohol B? [1]
- (b) Draw the structure of one other alcohol which is an isomer of **B**.

Show all of the atoms and all of the bonds.

		[1]
(c)	Ethanoic acid is produced by the oxidation of ethanol.	
	State the reagent for this reaction.	
		[1]
(d)	Ethanol is a simple molecular compound.	
	Explain why liquid ethanol does not conduct electricity.	
		[1]

(e) Ethanol can be dehydrated to form ethene, C_2H_4 .

Describe, using a dot-and-cross diagram, the bonding in a molecule of ethene.

Only include the outer shell electrons.

[2]

[Total: 6]

Section B

Answer three questions from this section in the spaces provided.

The total mark for this section is 30.

- 7 This question is about some of the oxides of the elements in Period 3.
 - (a) State the electronic configuration of the negative ion in sodium oxide, Na_2O .
 -[1]
 - (b) Magnesium oxide is an insoluble base that can be used to prepare pure magnesium sulfate crystals.

Describe the essential practical details for the preparation of pure magnesium sulfate crystals from magnesium oxide.

- (c) An oxide of phosphorus contains 43.7% by mass of phosphorus.
 - (i) Show that the empirical formula for this oxide is P_2O_5 .

[2]

(ii) A sample of this oxide has a mass of 2.56 g.

The sample contains 0.00901 mol of the oxide.

Calculate the relative molecular mass and hence the molecular formula for this oxide of phosphorus.

relative molecular mass

molecular formula[2]

(d) State the structure and bonding in silicon dioxide, SiO₂.

......[1]

[Total: 10]

- 8 Copper is a transition element.
 - (a) State two properties that are typical of the compounds of a transition element.
 - 1 2

[2]

(b) Aqueous copper(II) sulfate reacts with aqueous potassium iodide.

The ionic equation for this reaction is shown.

 $2Cu^{2+}(aq) + 4I^{-}(aq) \rightarrow 2CuI(s) + I_2(aq)$

Explain how this equation shows that the reaction involves oxidation.

.....

......[1]

(c) Anhydrous copper(II) sulfate decomposes when heated strongly.

 $CuSO_4(s) \rightarrow CuO(s) + SO_3(g)$

A sample of 6.40 g of CuSO₄ is heated until all of the sample has thermally decomposed.

Calculate the volume of sulfur trioxide formed, in dm³, measured at room temperature and pressure.

volume of sulfur trioxide dm³ [3]

- (d) Iron reacts with aqueous copper(II) sulfate to make aqueous iron(II) sulfate and copper.
 - (i) Construct the ionic equation for this reaction.
- (ii) Suggest one observation that would be seen during this reaction.
 (iii) Suggest one observation that would be seen during this reaction.
 (iii) Suggest one observation that would be seen during this reaction.
 (iii) Suggest one observation that would be seen during this reaction.
 (iii) Suggest one observation that would be seen during this reaction.
 (iii) Suggest one observation that would be seen during this reaction.
 (iii) Suggest one observation that would be seen during this reaction.
 (iii) Suggest one observation that would be seen during this reaction.
 (iii) Suggest one observation that would be seen during this reaction.
 (iii) Suggest one observation that would be seen during this reaction.
 (iii) Suggest one observation that would be seen during this reaction.
 (iii) Suggest one observation that would be seen during this reaction.
 (iii) Suggest one observation that would be seen during this reaction.
 (iii) Suggest one observation that would be seen during this reaction.
 (iii) Suggest one observation that would be seen during this reaction.
 (iii) Suggest one observation that would be seen during this reaction.
 (iii) Describe a chemical test that can be used to distinguish between aqueous solutions of iron(II) sulfate and copper(II) sulfate .
 (iii) Suggest one observation that would be seen during the see

Sulfur dioxide is a colourless gas which can be found in air. (a) State one environmental problem caused by the presence of sulfur dioxide in air. (b) When heated in air iron pyrite, FeS_2 , reacts with oxygen. Sulfur dioxide and iron(III) oxide, Fe_2O_3 , are the products of this reaction. Construct the equation for this reaction.[2] (c) Give one use for sulfur dioxide.[1] (d) Liquid sulfur dioxide is stored in cylinders. When the cylinder is opened the liquid quickly changes into a gas. Use the kinetic particle theory to describe the changes in movement and arrangement of the particles when liquid sulfur dioxide becomes a gas. (e) Sulfur dioxide has a low melting point. Suggest, in terms of structure and bonding, why sulfur dioxide has a low melting point.[2]

(f)	Describe the chemical test for sulfur dioxide.
	test
	observation
	[2]

[Total: 10]

- **10** Fractional distillation and cracking are important processes in the conversion of petroleum (crude oil) into useful hydrocarbons.
 - (a) Fractional distillation separates petroleum (crude oil) into fractions such as bitumen and naphtha.
 - (i) Which physical property allows the petroleum (crude oil) to be separated into fractions?
 -[1]
 - (ii) Describe the separation of petroleum (crude oil) by fractional distillation.

(iii) Give one use of the bitumen fraction.
(1)
(b) The naphtha fraction is used as a chemical feedstock.
One of the hydrocarbons in naphtha has the molecular formula C₁₀H₂₂.
Use the general formula for an alkane to show that C₁₀H₂₂ is an alkane.

.....[2]

(i) Product A gives a squeaky pop when ignited with a burning splint.

Identify product A.

- (ii) Product **B** has a relative molecular mass of 98 and decolourises aqueous bromine.

Suggest the molecular formula for ${\bf B}.$

Explain your answer.

molecular formulaexplanation

(iii) Product C can be polymerised to give the polymer shown.

Draw the structure of product **C**.

[1]

[Total: 10]

- Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.
- To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.
- Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

d
(r.t
ure (r.t
⁰
) Le:
ature and p
an
Ire
atı
oer
m
oom tem
NO
ţ
3
is 24 dm³ at roc
24
<u>.</u>
e volume of one mole of any gas is 24 dm 3 at room temperature and pres
ny
of a
<u>e</u>
ũ
e
[o
ne of oi
Ĩ
ğ
е <
Ę

71	Lu	lutetium 175	103	Ļ	lawrencium	I
70	Υb	ytterbium 173	102	No	nobelium	I
69	Ta	thulium 169	101	Md	mendelevium	I
68	ц	erbium 167	100	Е'n	fermium	I
67	Ч	holmium 165	66	Es	einsteinium	I
66	D	dysprosium 163	98	ç	californium	I
65	Tb	terbium 159	97	BK	berkelium	I
64	Вd	gadolinium 157	96	CB	curium	I
63	Eu	europium 152	95	Am	americium	I
62	Sm	samarium 150	94	Pu	plutonium	I
61	Рш	promethium -	93	Np	neptunium	I
60	Nd	neodymium 144	92		uranium	238
59	Pr	praseodymium 141	91	Ра	protactinium	231
58	Ce	cerium 140	06	Тh	thorium	232
57	La	lanthanum 139	89	Ac	actinium	I
	lanthanoids			actinoids		

	VIII	2	He	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	Кr	krypton 84	54	Xe	xenon 131	86	Rn	radon -			
	١١				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	Ъ	bromine 80	53	Ι	iodine 127	85	At	astatine -			
	⋝				œ	0	oxygen 16	16	თ	sulfur 32	34	Se	selenium 79	52	Те	tellurium 128	84	Ро	polonium –	116	۲۷	livermorium -
	>				7	z	nitrogen 14	15	٩	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	Ē	bismuth 209			
	≥				9	U	carbon 12	14	S.	silicon 28	32	Ge	germanium 73	50	Sn	tin 119	82	Pb	lead 207	114	Fl	flerovium -
	≡				5	В	boron 11	13	Ρl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204			
								-			30	Zn	zinc 65	48	Cd	cadmium 112	80	Hg	mercury 201	112	Cn	copernicium -
											29	Cu	copper 64	47	Ag	silver 108	79	Au	gold 197	111	Rg	roentgenium -
Group											28	ïZ	nickel 59	46	Pd	palladium 106	78	Ę	platinum 195	110	Ds	damstadtium -
9 D											27	ပိ	cobalt 59	45	Rh	rhodium 103	77	Ir	iridium 192	109	Mt	meitnerium -
		-	т	hydrogen 1							26	Ъe	iron 56	44	Ru	ruthenium 101	76	Os	osmium 190	108	Hs	hassium -
								_			25	Mn	manganese 55	43	Ч	technetium -	75	Re	rhenium 186	107	Bh	bohrium –
						bol	ass				24	C	chromium 52	42	Mo	molybdenum 96	74	\geq	tungsten 184	106	Sg	seaborgium -
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	ЧN	niobium 93	73	Та	tantalum 181	105	Db	dubnium —
						atc	rel				22	i	titanium 48	40	Zr	zirconium 91	72	Ŧ	hafnium 178	104	Rf	rutherfordium —
											21	Sc	scandium 45	39	≻	yttrium 89	57-71	lanthanoids		89-103	actinoids	
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	S	strontium 88	56	Ba	barium 137	88	Ra	radium -
	_				Э	:	lithium 7	11	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	Fr	francium -

20

5070/22/M/J/20