

Cambridge O Level

CHEMISTRY

Paper 1 Multiple Choice

May/June 2021 1 hour

5070/11

You must answer on the multiple choice answer sheet.

You will need: Multiple choice answer sheet Soft clean eraser Soft pencil (type B or HB is recommended)

INSTRUCTIONS

- There are forty questions on this paper. Answer all questions.
- For each question there are four possible answers **A**, **B**, **C** and **D**. Choose the **one** you consider correct and record your choice in soft pencil on the multiple choice answer sheet.
- Follow the instructions on the multiple choice answer sheet.
- Write in soft pencil.
- Write your name, centre number and candidate number on the multiple choice answer sheet in the spaces provided unless this has been done for you.
- Do **not** use correction fluid.
- Do **not** write on any bar codes.
- You may use a calculator.

INFORMATION

- The total mark for this paper is 40.
- Each correct answer will score one mark.
- Any rough working should be done on this question paper.
- The Periodic Table is printed in the question paper.

This document has 16 pages.

1 A student has to measure 28.2 cm^3 of aqueous sodium bromide.

Which piece of apparatus should the student select?

- 2 Which property of a liquid ester can be used to check its purity before use as a food flavouring?
 - A boiling point
 - B colour
 - C smell
 - D solubility in water
- **3** Which sequence of procedures is used to separate a pure, dry sample of hydrated copper(II) sulfate, CuSO₄•5H₂O, from a mixture containing hydrated copper(II) sulfate and calcium carbonate, CaCO₃?
 - **A** dissolve in water \rightarrow distillation \rightarrow crystallisation
 - **B** dissolve in water \rightarrow filtration \rightarrow crystallisation
 - **C** distillation \rightarrow crystallisation \rightarrow heating to remove all water
 - **D** fractional distillation \rightarrow filtration \rightarrow heating to remove all water

4 J is an aqueous solution.

On addition of aqueous sodium hydroxide to J a green precipitate is formed.

The resulting mixture is heated and no gas is formed.

Aluminium foil is added to the warmed mixture. A gas is formed that turns damp red litmus paper blue.

Which ions could be present in J?

- **A** Fe^{3+} and NH_4^+
- **B** Fe^{3+} and NO_3^-
- \mathbf{C} Fe²⁺ and NH₄⁺
- **D** Fe^{2+} and NO_3^-
- **5** Gas X has the following properties.
 - 1 colourless
 - 2 no effect on either damp red or blue litmus papers
 - 3 no effect on limewater
 - 4 flammable

What is gas X?

- **A** ammonia
- B chlorine
- C hydrogen
- **D** oxygen
- 6 Which particle contains most electrons?

Α	O ³⁻	В	Ne	С	Na ⁻	D	Mg ³⁺

7 The diagrams show the structures of two solids, P and Q.

Which row is correct?

	has covalent bonding	conducts electricity
Α	P only	P only
в	P only	Q only
С	both P and Q	P only
D	both P and Q	Q only

- 8 What is a covalent bond?
 - **A** a pair of electrons shared by two non-metallic atoms
 - **B** electrons being shared by a lattice of positively charged ions
 - **C** elements losing electrons to achieve a noble gas structure
 - **D** oppositely charged particles strongly attracting each other
- **9** The empirical formula of compound X is CH_2 and the relative molecular mass, M_r , of X is 70.

What is the molecular formula of X?

- **A** CH_2 **B** C_2H_4 **C** C_5H_{10} **D** C_nH_{2n}
- **10** A chemist wants to make calcium nitrate. They start with 8.00 g of pure calcium oxide and an excess of dilute nitric acid. They produce 12.65 g of pure, dry anhydrous calcium nitrate crystals.

What is the percentage yield of calcium nitrate?

[relative atomic masses, *A*_r: Ca, 40; N, 14; H, 1; O, 16]

A 54.0 **B** 63.2 **C** 67.1 **D** 86.8

11 The relative formula masses of four compounds are given.

A student has a 1.0 g sample of each compound.

Which sample contains the highest number of moles of oxygen atoms?

	compound	relative formula mass
Α	Al_2O_3	102
В	CuO	80
С	H_2SO_4	98
D	HNO ₃	63

12 How many elements combine to form the compound ammonium sulfate?

A 2	B 4	C 10	D 15
------------	------------	-------------	-------------

13 An aqueous mixture of copper(II) nitrate and silver nitrate is electrolysed with pure copper electrodes.

Which half-equation correctly describes the change occurring at the anode?

- $\textbf{A} \quad \textbf{Cu} \ \rightarrow \ \textbf{Cu}^{2\text{+}} \ \textbf{+} \ 2e^{-}$
- $\textbf{B} \quad \text{Cu}^{2\text{+}} \ \textbf{+} \ 2e^{\text{-}} \ \textbf{\rightarrow} \ \text{Cu}$
- $\textbf{C} \quad \text{Ag} \ \rightarrow \ \text{Ag}^{\scriptscriptstyle +} \ \textbf{+} \ e^{\scriptscriptstyle -}$
- $\textbf{D} \quad Ag^{\scriptscriptstyle +} \ \textbf{+} \ e^{\scriptscriptstyle -} \ \rightarrow \ Ag$

14 The diagram shows the electrolysis of concentrated and dilute aqueous sodium chloride using inert electrodes. Gases are produced and collected in each of the test-tubes W, X, Y and Z.

Which statements are correct?

- 1 Approximately equal volumes of gas are produced and collected in test-tubes W and X.
- 2 Approximately equal volumes of gas are produced and collected in test-tubes Y and Z.
- 3 Three different gases are produced in the experiment.
- A 1, 2 and 3 B 1 and 2 only C 2 and 3 only D 1 and 3 only
- 15 Which positive ions are present in aqueous copper(II) sulfate?
 - **A** copper(II) ions only
 - **B** copper(II) ions and hydrogen ions
 - C sulfate ions only
 - D sulfate ions and hydroxide ions
- **16** These statements refer to hydrogen and its use as a fuel.
 - 1 Both water and hydrocarbons can be used as a source of hydrogen.
 - 2 In a fuel cell hydrogen reacts with oxygen to generate electricity.
 - 3 The reaction taking place in a fuel cell is a redox reaction.

Which statements are correct?

A 1 and 2 only B 1 and 3 only C 2 and 3 only D 1, 2 and 3

Which statements are correct?

- 1 Sugar cane is a non-renewable (finite) resource.
- 2 When sugar cane is growing it removes carbon dioxide from the atmosphere.
- **A** 1 only
- B 2 only
- **C** both 1 and 2
- **D** neither 1 nor 2
- **18** Which changes will speed up a chemical reaction?
 - 1 decreasing the pressure in a reaction between gases
 - 2 increasing the size of the solid particles in a reaction involving solids
 - 3 increasing the temperature of any reaction
 - 4 increasing the concentration of a solution
 - **A** 1 and 3 **B** 2, 3 and 4 **C** 3 and 4 only **D** 4 only

19 Magnesium reacts with dilute sulfuric acid.

$$Mg(s) + H_2SO_4(aq) \rightarrow MgSO_4(aq) + H_2(g)$$

Two experiments are carried out at 25 °C.

- experiment 1 24.0 g of powdered magnesium is reacted with 100 cm³ of 1.0 mol/dm³ sulfuric acid.
- experiment 2 24.0 g of powdered magnesium is reacted with 50 cm³ of 2.0 mol/dm³ sulfuric acid.

During each experiment the volume of hydrogen produced is measured. The results are plotted on a graph.

Which graph is correct?

$$1 \quad \underbrace{CH_4}_{2} + 2O_2 \rightarrow \underbrace{CO_2}_{2} + 2H_2O$$

$$2 \quad \underbrace{CH_4}_{2} + 2O_2 \rightarrow \underbrace{CO_2}_{2} + 2H_2O$$

$$2 \quad \underbrace{CH_2S}_{2} + SO_2 \rightarrow \underbrace{3S}_{2} + 2H_2O$$

$$3 \quad BrO_3^- + \underbrace{5Br^-}_{2} + 6H^+ \rightarrow \underbrace{3Br_2}_{2} + \underbrace{3H_2O}_{2}O$$

$$1 \text{ only} \quad \mathbf{B} \quad 2 \text{ only} \quad \mathbf{C} \quad 1 \text{ and } 3 \quad \mathbf{D} \quad 2 \text{ and } 3$$

Α

21 The Haber process converts nitrogen and hydrogen into ammonia.

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

Which row is correct?

	change in condition	position of equilibrium
Α	pressure is increased	moves to the left
В	pressure is reduced	no change
С	catalyst present	moves to the right
D	catalyst present	no change

22 Which row shows the pH values for 0.1 mol/dm³ solutions of ammonia, hydrochloric acid, sodium chloride and sodium hydroxide?

		pH va	alues	
	NH ₃	HC1	NaC <i>l</i>	NaOH
Α	1	7	13	11
в	7	1	11	13
С	11	1	7	13
D	13	11	7	1

23 The water in a lake is acidic and the fish are dying. The water in the lake needs to be neutralised.

Which compound can be added in excess to neutralise the water in the lake?

- A calcium carbonate
- B phosphoric acid
- **C** potassium hydroxide
- D sodium nitrate

.....1..... can be used to prepare insoluble salts, such as2......

The salt is collected by 3..... and it is then4......

Which words correctly complete gaps 1–4?

	1	2	3	4
Α	precipitation	barium nitrate	filtration	evaporated
в	precipitation	lead sulfate	evaporation	washed and dried
С	precipitation	lead sulfate	filtration	washed and dried
D	titration	barium nitrate	evaporation	washed and dried

25 The Haber process is used to make ammonia at a temperature of 400 °C and a pressure of 20000 kPa. The temperature is changed to 500 °C but the pressure is kept the same.

What will be the effects of this change on the production of ammonia?

- A It is made at an increased rate and the position of the equilibrium moves to the left.
- **B** It is made at an increased rate and the position of the equilibrium moves to the right.
- **C** It is made at a decreased rate and the position of the equilibrium moves to the left.
- **D** It is made at a decreased rate and the position of the equilibrium moves to the right.
- 26 Some properties which indicate the differences in elements are listed.
 - 1 metallic character
 - 2 number of electron shells in an atom
 - 3 number of protons in an atom
 - 4 total number of electrons in an atom

Which two properties increase across a period of the Periodic Table?

A 1 and 2 **B** 1 and 3 **C** 2 and 4 **D** 3 and 4

27 Elements X and Y combine to form an ionic compound.

Atoms of X have more protons than atoms of Y.

Atoms of Y have more valence electrons than atoms of X.

Which statement is correct?

- **A** lons of X are negatively charged.
- **B** Atoms of X have more electron shells than atoms of Y.
- **C** X and Y are in the same period of the Periodic Table.
- **D** X and Y are in the same group of the Periodic Table.
- **28** The elements in Group I of the Periodic Table show trends in both their reactivities and their melting points. Rubidium is in Group I.

Which statement about rubidium is correct?

- **A** It has a higher melting point than potassium.
- **B** It reacts with water to produce an acidic solution.
- **C** It reacts with water to produce oxygen gas.
- **D** It is more reactive than potassium.
- **29** The properties of four substances are shown.

Which substance is a metal?

- A It conducts electricity when dissolved in water but not when solid.
- **B** It has a high melting point and conducts heat when solid.
- **C** It has a low melting point and is brittle.
- **D** It has a giant covalent structure with a high melting point.

30 Group I elements and transition elements are metals.

Student X suggests that the Group I elements are above hydrogen in the metal reactivity series but that not all transition elements are.

Student Y suggests that the densities of Group I elements are lower than those of the transition elements.

Which students are correct?

- A both X and Y
- B X only
- C Y only
- D neither X nor Y
- 31 Tin is more reactive than lead but less reactive than iron.

Which method would be most suitable for extracting tin from its ore?

- **A** electrolysis
- B heating alone
- **C** heating with carbon
- D reacting with hydrogen
- **32** Attaching pieces of magnesium to underground iron pipes can protect the iron from corrosion.

Which reaction protects the iron from corrosion?

- **A** $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$
- **B** Fe(s) \rightarrow Fe²⁺(aq) + 2e⁻
- **C** Mg²⁺(aq) + 2e⁻ \rightarrow Mg(s)
- **D** Mg(s) \rightarrow Mg²⁺(aq) + 2e⁻
- **33** Which reactions take place during the extraction of aluminium from aluminium oxide using carbon electrodes?
 - 1 $2O^{2-} \rightarrow O_2 + 4e^-$ 2 $C + O_2 \rightarrow CO_2$
 - 3 $Al^{2+} + 2e^- \rightarrow Al$
 - **A** 1 only **B** 1 and 2 only **C** 2 and 3 only **D** 1, 2 and 3

- 34 Which statement about gases in the atmosphere is correct?
 - A Carbon monoxide is a pollutant which causes acid rain.
 - **B** Catalytic converters reduce carbon monoxide to carbon dioxide.
 - **C** Methane in the atmosphere depletes the ozone layer.
 - **D** Photosynthesis adds oxygen to the atmosphere.
- **35** How many moles of hydrogen chloride are formed when one mole of methane reacts with a large excess of chlorine in sunlight?

A 1 **B** 2 **C** 3 **D** 4

36 Compound X is shown in the dot-and-cross diagram.

Which statement about compound X is correct?

- **A** It is a saturated hydrocarbon.
- **B** It is an isomer of butene.
- **C** It will decolourise bromine water.
- **D** Its name is propane.

- 37 Which statements about alcohols are correct?
 - 1 All alcohols contain the hydroxide ion, OH⁻.
 - 2 Ethanol can be formed from ethene using a reaction catalysed by yeast.
 - 3 Methanol can be oxidised to methanoic acid.
 - 4 The alcohols X and Y shown are isomers.

38 An ester has the formula $C_2H_5COOC_2H_5$.

Which pair of compounds would react together to form this ester?

A ethanoic acid and ethanol

Α

- **B** ethanol and propanoic acid
- **C** propanoic acid and propanol
- **D** propanol and ethanoic acid
- 39 Which statement about polymers is correct?
 - A Nylon and *Terylene* are both polyesters.
 - **B** Proteins and nylon have the same monomer units.
 - **C** Proteins have the same amide linkages as nylon.
 - **D** *Terylene* and fats are esters but with different linkages.

40 X is a polymer.

When X is hydrolysed one of the products is substance Y.

Which type of polymer is X?

- A a complex carbohydrate
- B a fat
- **C** a protein
- D an addition polymer

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

The volume of one mole of any gas is $24\,dm^3$ at room temperature and pressure (r.t.p.).

	=	V
	_	e

The Periodic Table of Elements

:							Gro	Group			:		:	:		
												\geq	>	N	١١	VIII
						-										2
						т										He
			Key			hydrogen 1										helium 4
			atomic number		_						5	9	7	80	6	10
		ato	atomic symbol	loc							В	ပ	z	0	ш	Ne
		rela	name relative atomic mass	SS							boron 11	carbon 12	nitrogen 14	oxygen 16	fluorine 19	neon 20
											13	14	15	16	17	18
											Ρl	Si	٩	S	Cl	Ar
											aluminium 27	silicon 28	phosphorus 31	sulfur 32	chlorine 35.5	argon 40
	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	Sc	F	>	ັບ	Mn	Fе	ပိ	Ż	Cu	Zn	Ga	Ge	As	Se	Ъ	Кr
Ŵ.	scandium 45	titanium 48	vanadium 51	chromium 52	manganese 55	iron 56	cobalt 59	nickel 59	copper 64	zinc 65	gallium 70	germanium 73	arsenic 75	selenium 79	bromine 80	krypton 84
	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	~	Zr	qN	Mo	Ч	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
	yttrium 89	zirconium 91	niobium 93	molybdenum 96	technetium -	ruthenium 101	rhodium 103	palladium 106	silver 108	cadmium 112	indium 115	tin 119	antimony 122	tellurium 128	iodine 127	xenon 131
	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
ar	anthanoids	Ηf	Та	\geq	Re	SO	Ir	Ţ	Au	Hg	11	Pb	Bi	Ро	At	Rn
		hafnium 178	tantalum 181	tungsten 184	rhenium 186	osmium 190	iridium 192	platinum 195	gold 197	mercury 201	thallium 204	lead 207	bismuth 209	polonium –	astatine -	radon -
1.00	89-103	104	105	106	107	108	109	110	111	112		114		116		
0	actinoids	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	C		Γl		2		
	E	utherfordium 	dubnium –	seaborgium -	bohrium –	hassium -	meitnerium -	darmstadtium -	roentgenium -	copernicium -		flerovium -		livermorium –		
							-	-	-				-	-		
	57	58	59	60	61		63	64	65	99	67	68	69	70	71	
	La	Ce	Pr		Pm		Еu	Gd	Tb	Dy	Ю	ц	Tm	Чb	Lu	
<u>a</u>	lanthanum 139	cerium 140	praseodymium 141	neodymium 144	promethium -	samarium 150	europium 152	gadolinium 157	terbium 159	dysprosium 163	holmium 165	erbium 167	thulium 169	ytterbium 173	Iutetium 175	
	89	06	91		93		95	96	97	98	66	100	101	102	103	
	Ac	Th	Ра		dN	Pu	Am	Cm	Ŗ	Ç	Es	Еm	Md	No	Ļ	
10	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium	
	-	232	231	238	I	I	I	I	I	I	I	I	I	I	I	

5070/11/M/J/21

16