

Cambridge O Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY			5070/21
Paper 2 Theory	,		May/June 2021
			1 hour 30 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Section A: answer **all** questions.
- Section B: answer three questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

BLANK PAGE

Section A

Answer all the questions in this section in the spaces provided.

The total mark for this section is 45.

1 Choose from the following compounds to answer the questions.

Each compound may be used once, more than once or not at all.

Sta	e which compound:	
(i)	has a molecule with only 14 atoms	
		[1]
(ii)	can be oxidised to form propanoic acid	
(iii)	is an isomer of butane	
		[1]
(iv)	reacts with steam to make an alcohol	
		[1]
(v)	can be polymerised to make a polyester.	
		[1]
Sta	e which two compounds in aqueous solution turn blue litmus red.	
		[1]
021	5070/21/M/ 1/21	[Total: 6] [Turn over]
	(i) (ii) (iii) (iv) (v)	 (ii) can be oxidised to form propanoic acid (iii) is an isomer of butane (iv) reacts with steam to make an alcohol (v) can be polymerised to make a polyester. State which two compounds in aqueous solution turn blue litmus red.

[1]
[1]
[1]
[1]
[1]
-

The compound contains 22.1% oxygen by mass and 17.5% fluorine by mass.

Calculate the empirical formula of this compound.

Helium, neon, argon, krypton, xenon and radon are noble gases in Group VIII.

- (f) A sample of neon has a volume of 21 dm³ at room temperature and pressure.
 - (i) The temperature of the sample is increased.

The pressure remains constant.

Describe and explain, using kinetic particle theory, what happens to the volume of the sample.

.....[1]

(ii) The pressure of the sample is increased.

The temperature remains constant.

Describe and explain, using kinetic particle theory, what happens to the volume of the sample.

.....[1]

(iii) Calculate the mass of neon in the 21 dm³ sample.

Give your answer to **two** significant figures.

mass g [2]

[Total: 12]

- (a) Petroleum (crude oil) is separated into fractions such as liquefied petroleum gas, petrol (gasoline) and naphtha.
 - (i) Name the process used to separate petroleum (crude oil) into fractions.
 - (ii) Name one **other** fraction separated from petroleum (crude oil).

Give a large-scale use for this fraction.

fraction

[1]

......[1]

(iii) Petroleum (crude oil) does not contain enough of the fractions that contain smaller hydrocarbon molecules such as petrol (gasoline).

Petroleum contains a high proportion of larger hydrocarbon molecules such as naphtha.

Describe how the demand for smaller hydrocarbon molecules is satisfied.

(b) The structure of chloroethene is shown.

Chloroethene is the monomer used to make poly(chloroethene).

Poly(chloroethene) is non-biodegradable.

(i) Explain the meaning of the term *non-biodegradable*.

......[1]

(iii) Draw the partial structure of poly(chloroethene).
(iii) Draw the partial structure of poly(chloroethene).
Show at least two repeat units.
[2]
(iv) A factory uses 100 tonnes of chloroethene to make poly(chloroethene).
Deduce the mass of poly(chloroethene) made. Assume the percentage yield is 100%.
Explain your answer.
[1]
(v) Chloroethene reacts with hydrogen in the presence of a catalyst.

Suggest the structure of the product of this reaction.

[1]

[Total: 10]

Describe one environmental problem caused by the disposal of non-biodegradable

(ii)

plastics.

- **4** Copper(II) chloride, copper(II) iodide and copper(II) carbonate are ionic compounds.
 - (a) Predict two physical properties, other than electrical conductivity, of copper(II) chloride.
 - 1.

 2.
 - (b) Copper is a transition element.

Suggest **one** property of copper(II) chloride that is characteristic of a compound of a transition element.

-[1]
- (c) Copper reacts with chlorine to make copper(II) chloride.

 $\mathrm{Cu}\,+\,\mathrm{Cl}_2\,\rightarrow\,\mathrm{CuCl}_2$

Copper(II) chloride contains Cu^{2+} and Cl^{-} ions.

Explain, in terms of the movement of electrons, how $CuCl_2$ is formed from copper atoms and chlorine molecules.

[2]

(d) Copper(II) iodide decomposes to make iodine and copper(I) iodide.

The ionic equation for this reaction is shown.

 $2Cu^{2+} + 4I^- \rightarrow 2CuI + I_2$

(i) Use the information to explain that oxidation takes place.

(ii) Use the information to explain that reduction takes place.

-[1]
- (e) A sample of copper(II) carbonate is heated strongly.

Name the products of this reaction.

......[1]

[2]

5 Iron pyrite, FeS_2 , is an ore of iron.

When heated in air, FeS_2 produces both iron(III) oxide and sulfur dioxide.

(a) Balance the equation shown. $\dots\dots \operatorname{FeS}_2 + \dots \dots \operatorname{O}_2 \rightarrow \dots \dots \operatorname{Fe}_2 \operatorname{O}_3 + \dots \dots \operatorname{SO}_2$ [1] (b) Describe one environmental problem caused by sulfur dioxide in the air.[1] (c) Describe how sulfur dioxide is converted into sulfuric acid in the contact process. _____[3] (d) State one other use of sulfur dioxide. (e) Iron(III) oxide, coke, limestone and hot air are heated together in a blast furnace to make molten iron. Describe the function in the blast furnace of: (i) coke (ii) limestone (iii) hot air. [Total: 9]

© UCLES 2021

Section B

10

Answer three questions from this section in the spaces provided.

The total mark for this section is 30.

- 6 Carbon dioxide and water vapour are greenhouse gases found in air.
 - (a) (i) Name one other greenhouse gas.
 - (ii) State one environmental problem that may be caused by an increase in the percentage of carbon dioxide in the air.

......[1]

(b) Draw the dot-and-cross diagram to show the bonding in a molecule of carbon dioxide.

Only show the outer shell electrons.

Construct the equation to show the complete combustion of methane.

......[1]

[1]

(d) The carbon dioxide made in power stations can be removed by a reversible reaction with water.

$$CO_2(g) + H_2O(I) \rightleftharpoons H_2CO_3(aq)$$

The forward reaction is exothermic.

(i) The concentration of carbon dioxide is increased.

The temperature is kept constant.

Predict and explain how the position of equilibrium changes.

·····

- (ii) The temperature of the water is increased.

All other conditions are kept constant.

Predict and explain how the position of equilibrium changes.

(e) Carbonic acid, $H_2CO_3(aq)$, is a weak acid.

(i) What is the meaning of the term *weak* in weak acid?

.....

- (ii) Carbonic acid contains a small concentration of carbonate ions, $CO_3^{2-}(aq)$.

If carbonic acid is pumped deep underground, the $CO_3^{2-}(aq)$ will react with metal ions to form insoluble carbonates.

Write the ionic equation for the reaction of magnesium ions with $CO_3^{2-}(aq)$.

......[1]

[Total: 10]

7 Aqueous ammonium nitrite, $NH_4NO_2(aq)$, decomposes when heated, as shown.

$$NH_4NO_2(aq) \rightarrow N_2(g) + 2H_2O(I)$$

(a) A 25.0 cm³ sample of 0.150 mol/dm³ NH₄NO₂(aq) is heated.

Calculate the maximum volume, in dm³, of nitrogen formed, measured at room temperature and pressure.

volume of nitrogen dm³ [2]

(b) The concentration of $NH_4NO_2(aq)$ is decreased.

The temperature of the reaction remains constant.

State and explain how the rate of reaction changes.

[3]

(c) NH₄NO₂ contains the ammonium ion, NH₄⁺, and the nitrite ion.
 A mixture of aqueous calcium hydroxide and NH₄NO₂(s) is warmed.
 Calcium nitrite, water and a gas are formed. The gas turns damp red litmus paper blue.
 Construct the equation for this reaction.

(d) $NH_4NO_2(aq)$ is added to a sample of aqueous potassium iodide.

A brown solution is formed.

(i) Name the brown solution.
[1]
(ii) Name the type of reaction that causes this brown solution to form.
[1]
[1]
[Total: 10]

- 8 Silver is a transition element with proton number 47.
 - (a) Use the Periodic Table to state the number of occupied electron shells in an atom of silver. [1]
 - (b) Describe, with the aid of a diagram, the metallic bonding in silver.

	[3]
(c)	Give two physical properties of silver that are only characteristic of transition elements but not of all metals.
	1
	2
	[1]
(d)	Silver nitrate is a white crystalline soluble salt.
	Name a suitable combination of an acid and an insoluble base which is used to prepare silver nitrate.
	acid
	base
	[1]

(e) Aqueous silver nitrate, AgNO₃(aq), is electrolysed using inert electrodes.

The products of the electrolysis are silver and oxygen.

	(i)	Silver ions are reduced at the cathode to make silver atoms.
		Construct the ionic equation for this reduction.
		[1]
	(ii)	Hydroxide ions are oxidised at the anode to make both oxygen molecules and water molecules.
		Construct the ionic equation for this oxidation.
		[1]
	(iii)	Explain why solid silver nitrate cannot be electrolysed.
		[1]
(f)	Acio	dified aqueous silver nitrate reacts with aqueous sodium iodide.
	Stat	te the observations for this reaction.
		[1]
		[Total: 10]

- 16
- \cap | -C | = C Н Н (a) Use the structure to explain why propenyl ethanoate is unsaturated. (b) Describe a chemical test to show that propenyl ethanoate is unsaturated. test observation [2] (c) Propenyl ethanoate is prepared by the reaction between a carboxylic acid and an alcohol, as shown. \cap Н -H + H = O = C = C = C + H = C = C = C = C+ H—O—H H-Ĥ Ĥ н (i) Name the carboxylic acid used. (ii) The reaction uses concentrated sulfuric acid as a catalyst. Describe how a catalyst speeds up a chemical reaction.[2]
- 9 The structure of propenyl ethanoate is shown.

(d) In an experiment 11.6g of the alcohol is reacted with an excess of the carboxylic acid. The experimental yield of propenyl ethanoate is 6.72g.

[The relative formula mass of propenyl ethanoate is 100.]

(i) Show that the maximum possible yield of propenyl ethanoate is 20.0 g.

[3]

(ii) Calculate the percentage yield of propenyl ethanoate in this experiment.

% yield [1]

[Total: 10]

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

<u>.</u>
÷
Ľ.
e
su
ŝ
JC.
σ
an
Ð
'n
Ţa
le l
Ĭ
tei
Ε
ō
Ţ
ש
ĩ
þ
24
le of any gas is $24dm^3$ at room temperature and pre-
as
ö
Ŋ
ສ
đ
le
Ĕ
Ð
o
ie volume of one mole of any gas is $24dm^3$ at room temperature and pressure (r.t.
ē
E
n lo
ž
he
F

© UCLES 2021

The Periodic Table of Elements

	VIII	2	He	helium 4	10	Ne	neon	18	Ar	argon 40	36	Ъ	krypton 84	54	Xe	xenon 131	86	Rn	radon -											
	VII				6	ш	fluorine	17	C1	chlorine 35.5	35	Br	bromine 80	53	Ι	iodine 127	85	At	astatine -				71	Lu	lutetium 175	103		i		
	VI				80	0	oxygen	19	2 ഗ	sulfur 32	34	Se	selenium 79	52	Те	tellurium 128	84	Ро	polonium –	116	۲<	livermorium -	70	Υb	ytterbium 173	102	No			
	>				7	z	nitrogen	ד לד	2 0	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	Bi	bismuth 209				69	Tm	thulium 169	101	Md			
	\geq				9	U	carbon	14		silicon 28	32	Ge	germanium 73	50	Sn	tin 119	82	Pb	lead 207	114	Γl	flerovium -	68	ц	erbium 167	100	Еm			
	Ш				5	ш	boron	= ¢	AI	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204				67	Ч	holmium 165	66	ВS	1		
											30	Zn	zinc 65	48	Cd	cadmium 112	80	Hg	mercury 201	112	C	copernicium -	99	D	dysprosium 163	86	Ç	;;		
											29	Cu	copper 64	47	Ag	silver 108	79	Au	gold 197	111	Rg	roentgenium -	65	Tb	terbium 159	97	Щ	:		
Group											28	ïZ	nickel 59	46	Pd	palladium 106	78	Ę	platinum 195	110	Ds	darmstadtium -	64	Gd	gadolinium 157	96	Cm	;;;;		
Gro											27	ပိ	cobalt 59	45	Rh	rhodium 103	77	Ir	iridium 192	109	Mt	meitnerium -	63	Eu	europium 152	95	Am			
		1	Т	hydrogen 1							26	Fе	iron 56	44	Ru	ruthenium 101	76	Os	osmium 190	108	Hs	hassium 	62	Sm	samarium 150	94	Pu	;		
					-						25	Mn	manganese 55	43	ЧС	technetium -	75	Re	rhenium 186	107	Bh	bohrium –	61	Pm	promethium -	93	aN			
								bol		4SS			24	ų	chromium 52	42	Мо	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -	60	Νd	neodymium 144	92		,
				Key	atomic number	atomic symbol	name				23	>	vanadium 51	41	ЧN	niobium 93	73	Та	tantalum 181	105	Db	dubnium –	59	Pr	praseodymium 141	91	Ра	;		
						ato		Lei			22	Ħ	titanium 48	40	Zr	zirconium 91	72	Hf	hafnium 178	104	Rf	rutherfordium 	58	Ce	cerium 140		ЧТ			
								-			21	Sc	scandium 45	39	≻	yttrium 89	57-71	lanthanoids		89-103	actinoids		57	La	lanthanum 139	89	Ac			
	=				4	Be	beryllium	40 10	Ma	magnesium 24	20	Ca	calcium 40	38	Sr	strontium 88	56	Ba	barium 137	88	Ra	radium -		ids				,		
	_				З	:	lithium →	11	Z	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	л Ц	francium -		lanthanoids			actinoids			