

Cambridge O Level

CANDIDATE NAME		
CENTRE NUMBER		CANDIDATE NUMBER
CHEMISTRY		5070/22
Paper 2 Theory	1	May/June 202
		1 hour 30 minute

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Section A: answer all questions.
- Section B: answer three questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

Section A

Answer all the questions in this section in the spaces provided.

The total mark for this section is 45.

1 Choose from the following compounds to answer the questions.

(b) Identify two compounds that have a pH of less than 7 in aqueous solution.

.....[1] [Total: 6] 4

2	Oxygen,	sulfur,	selenium,	tellurium	and	polonium	are in	Group VI.
---	---------	---------	-----------	-----------	-----	----------	--------	-----------

- (a) State the percentage composition by volume of oxygen in dry air.
- (b) State one large-scale use for oxygen.
 (c) Two isotopes of polonium are shown.

²⁰⁹₈₄Po ²¹⁰₈₄Po

- (i) Explain why both isotopes have the same chemical properties.
- (ii) Give one difference in the atomic structure of these two isotopes.

-[1]
- (d) Selenium forms a compound that contains only selenium, oxygen and chlorine.

The compound contains 9.6% oxygen by mass and 42.8% chlorine by mass.

Calculate the empirical formula of this compound.

empirical formula[3]

- (e) A sample of oxygen has a volume of 11.5 dm³ at room temperature and pressure.
 - (i) The temperature of the sample is decreased.

The pressure remains constant.

Describe and explain, using kinetic particle theory, what happens to the volume of the sample.

......[1]

(ii) The pressure of the sample is decreased.

The temperature remains constant.

Describe and explain, using kinetic particle theory, what happens to the volume of the sample.

......[1]

(iii) Calculate the mass of oxygen in the 11.5 dm³ sample at room temperature and pressure.

Give your answer to two significant figures.

mass g [2]

[Total: 11]

3 There is concern about the disposal of plastics made from non-biodegradable polymers.

(a) The partial structure of a non-biodegradable polymer is shown.

- (i) Name the type of polymer shown.
-[1]
- (ii) Draw the structure of the monomer used to make this polymer.

[1]

(iii) This polymer is often disposed of by combustion.

Suggest one problem associated with this method of disposal.

(b) Lactic acid is used to make poly(lactic acid), a biodegradable polymer.

The structure of lactic acid is shown.

(i) Suggest what is meant by the term *biodegradable*.

 (ii) Draw the partial structure of poly(lactic acid).

Show at least two repeat units.

(iii) A factory uses 500 tonnes of lactic acid to make poly(lactic acid).

The percentage yield is 100% but the mass of poly(lactic acid) made is less than 500 tonnes.

Explain why the mass of poly(lactic acid) made is less than 500 tonnes.

(iv) Aqueous lactic acid reacts with acidified potassium manganate(VII).
There is a colour change from purple to colourless.
Suggest what happens to the lactic acid in this reaction.
(1)
(v) Aqueous lactic acid is neutralised by aqueous sodium hydroxide.
Write the ionic equation for this neutralisation.
(1)
(vi) Aqueous lactic acid reacts with magnesium.
(vi) Aqueous lactic acid reacts with magnesium.
(1)
(vi) Aqueous lactic acid reacts with magnesium.
(1)

[Total: 10]

8

- Zinc bromide and zinc carbonate are both ionic compounds. (a) Predict two physical properties, other than electrical conductivity, of zinc bromide.
 - 1. 2.
 - (b) Zinc reacts with bromine to make zinc bromide.

$$Zn + Br_2 \rightarrow ZnBr_2$$

Zinc bromide contains Zn²⁺ and Br⁻ ions.

Explain, in terms of the movement of electrons, how ZnBr₂ is formed from zinc atoms and bromine molecules.

......[2]

(c) Aqueous zinc bromide reacts with magnesium as shown.

$$Zn^{2+} + Mg \rightarrow Mg^{2+} + Zn$$

- Use the equation to explain that oxidation takes place. (i)
 - _____
- Use the equation to explain that reduction takes place. (ii)
- (d) Zinc carbonate is insoluble in water.
 - Zinc carbonate can be prepared by reacting aqueous zinc bromide with CO₃²⁻(aq) ions (i) in a precipitation reaction.

Name a suitable aqueous solution that can provide $CO_3^{2-}(aq)$ ions.

- A sample of zinc carbonate is heated strongly. (ii)

Name the products of this reaction.

4

[2]

- 5 Petroleum (crude oil) provides the raw materials for making ethanol and ammonia.
 - (a) Describe how petroleum (crude oil) is separated to make fractions such as naphtha and petrol (gasoline).

(b)	Cor and	npounds such as $C_{11}H_{24}$ in the naphtha fraction are cracked to make hydrogen, alkenes smaller alkanes.
	(i)	Explain how the molecular formula $C_{11}H_{24}$ shows the compound is an alkane.
		[1]
	(ii)	Construct an equation to show the cracking of $C_{11}H_{24}$ to make ethene and an alkane only.
		[1]
(c)	Des	cribe how hydrogen is converted into ammonia in the Haber process.
	Incl	ude the conditions used in the Haber process.
		[3]
(d)	Stat	te one other use for hydrogen.
		[1]
(e)	Eth	ene reacts with a compound to make ethanol.
	(i)	Name the compound.
		[1]
	(ii)	State one condition for this reaction.
	('')	
		[Total: 10]

Section B

Answer three questions from this section in the spaces provided.

The total mark for this section is 30.

- 6 Sulfur dioxide and oxides of nitrogen are pollutants found in air.
 - (a) State one environmental problem caused by the presence of sulfur dioxide in the air.
 -[1]
 - (b) Coal-fired power stations produce sulfur dioxide as a pollutant.

The sulfur dioxide produced is prevented from entering the air by a process called flue gas desulfurisation, FGD.

Name the compound used in FGD that reacts with the sulfur dioxide.

-[1]
- (c) Coal-fired power stations also produce oxides of nitrogen such as NO.

NO is produced when nitrogen, N_2 , reacts with oxygen.

- (i) Construct the equation for this reaction.
 -[1]
- (ii) Draw a dot-and-cross diagram to show the bonding in a molecule of nitrogen.

Only include the outer shell electrons.

[1]

(iii) Explain why the rate of reaction between nitrogen and oxygen increases as the temperature increases.

 (d) Nitrogen dioxide, NO₂, reacts with water to form a mixture of dilute nitric acid, HNO₃, and dilute nitrous acid, HNO₂.

 $2NO_2 + H_2O \rightarrow HNO_2 + HNO_3$

(i) Nitrogen dioxide reacts with aqueous sodium hydroxide to form two different salts and water.

Construct the equation for this reaction.

(ii) Nitric acid is a strong acid.
 Nitrous acid is a weak acid.
 Describe the difference between a weak acid and a strong acid.

[2] [Total: 10] 7 Sulfamic acid, NH_2SO_3H , is a white crystalline solid.

It reacts with aqueous sodium nitrite to make nitrogen gas, as shown in the equation.

 $NH_2SO_3H(s) + NaNO_2(aq) \rightarrow N_2(g) + H_2O(l) + NaHSO_4(aq)$

(a) An excess of sulfamic acid reacts with a 20.0 cm^3 sample of $0.150 \text{ mol/dm}^3 \text{ NaNO}_2(\text{aq})$.

Calculate the maximum volume, in dm³, of nitrogen formed, measured at room temperature and pressure.

volume of nitrogen dm³ [2]

(b) The rate of this reaction can be determined by measuring the volume of nitrogen formed every second.

Draw a labelled diagram of the assembled apparatus that can be used to make, collect and measure the volume of nitrogen formed in this reaction.

[Total: 10]

- 8 Lead is a metal with proton number 82.
 - (a) (i) Use the Periodic Table to state the number of occupied electron shells in an atom of lead.

......[1]

(ii) Use the Periodic Table to state the number of electrons in the outer shell of an atom of lead.

......[1]

(b) Describe, with the aid of a labelled diagram, the metallic bonding in lead.

 (c) Give two physical properties of lead that are characteristic of all metals.

 1.

 2.

 [1]

 (d) Lead(II) ethanoate is a white crystalline soluble salt.

 Name a suitable combination of an acid and an insoluble base which is used to prepare lead(II) ethanoate.

 acid

 base

(e) Aqueous lead(II) ethanoate reacts with aqueous sodium iodide.
A yellow precipitate of lead(II) iodide, PbI₂, is formed.
Construct the ionic equation, with state symbols, for this reaction.
[2]
(f) Explain why solid lead(II) iodide cannot be electrolysed.
[1]
[10]

9 The structure of ethyl propenoate is shown.

- (a) Circle the atoms in the structure that show that ethyl propenoate is an ester. [1]
- (b) Aqueous bromine is shaken with a sample of ethyl propenoate.

Explain, in terms of the structure of ethyl propenoate, why the aqueous bromine turns colourless.

(d) In an experiment 10.8g of the carboxylic acid is reacted with an excess of the alcohol. The experimental yield of ethyl propenoate is 9.45g.

[The relative formula mass of the carboxylic acid is 72.]

(i) Show that the maximum possible yield of ethyl propenoate is 15.0 g.

[3]

(ii) Calculate the percentage yield of ethyl propenoate in this experiment.

% yield[1]

[Total: 10]

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

<i>.</i>
t.p.
Ŀ.
ure (r.
ore
p
ar
ure
rati
be
em
oom te
00
atr
U3.
dm
24
. <u>s</u>
gas
$lpha$ volume of one mole of any gas is 24 dm 3 at room temperature and press
of
mole
Ĕ
one
e of o
ne
Iur
2
The

Ď	ۍ ۲	×	xer	10	õ	С	rao													
80	53	Ι	iodine	127	85	At	astatine	I						71	Lu	lutetium 175	103	Ļ	lawrencium	I
79	52	Те	tellurium	128	84	Ро	polonium	I	116	2	livermorium	I		70	Υb	ytterbium 173	102	No	nobelium	I
75	51	Sb	antimony	122	83	Ē	bismuth	209						69	Tm	thulium 169	101	Md	mendelevium	I
73	50	Sn	tin	119	82	Pb	lead	207	114	۶l	flerovium	I		68	ш	erbium 167	100	Еm	fermium	I
0/	49	In	indium	115	81	Τl	thallium	204						67	Ч	holmium 165	66	Еs	einsteinium	I
65	48	Cd	cadmium	112	80	Hg	mercury	201	112	Cn	copernicium	I		99	Ŋ	dysprosium 163	86	ç	californium	I
64	47	Ag	silver	108	79	Au	gold	197	111	Rg	roentgenium	I		65	Тb	terbium 159	97	Ŗ	berkelium	I
59	46	Ъd	palladium	106	78	Ŧ	platinum	195	110	Ds	darmstadtium	I		64	Ъд	gadolinium 157	96	CB	curium	I
59	45	Rh	rhodium	103	77	Ir	iridium	192	109	Mt	meitnerium	I		63	Eu	europium 152	95	Am	americium	I
56	44	Ru	ruthenium	101	76	Os	osmium	190	108	Hs	hassium	I		62	Sm	samarium 150	94	Pu	plutonium	I
55	43	Ц	technetium	I	75	Re	rhenium	186	107	Bh	bohrium	I				promethium -		Np	neptunium	I
52	42	Mo	molybdenum	96	74	≥	tungsten	184	106	Sg	seaborgium	I		60	Νd	neodymium 144	92		uranium	238
51	41	ЧN	niobium	93	73	Та	tantalum	181	105		-			59	ŗ	praseodymium 1 141	91	Ра	protactinium	231
48	40	Zr	zirconium	91	72	Ξ	hafnium	178	104	Ŗ	rutherfordium	I		58	Se	cerium 140	06	Тh	thorium	232
45	39	≻	yttrium	89	57-71	lanthanoids			89-103	actinoids				57	La	lanthanum 139	89	Ac	actinium	I
40	38	S	strontium	88	56	Ba	barium	137	88	Ra	radium	I			vids			(0		
39	37	Rb	rubidium	85	55	S	caesium	133	87	ц	francium	I			lanthanoids			actinoids		

	IIIV	2	He	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	Ъ	krypton 84	54	Xe	xenon 131	86	Rn	radon -				
	١١				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	Ъ	bromine 80	53	Ι	iodine 127	85	At	astatine –				
	٨I				œ	0	oxygen 16	16	ა	sulfur 32	34	Se	selenium 79	52	Те	tellurium 128	84	Ро	polonium –	116	Ľ	livermorium _	
	>				7	z	nitrogen 14	15	٩	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	<u>.</u>	bismuth 209				
	\geq				9	ပ	carbon 12	14	Si	silicon 28	32	Ge	germanium 73	50	Sn	tin 119	82	Pb	lead 207	114	Fl	flerovium 	
	≡				£	ш	boron 11	13	Al	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	Τl	thallium 204				
											30	Zn	zinc 65	48	Cq	cadmium 112	80	Hg	mercury 201	112	Cu	copernicium -	
											29	Cu	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium -	
Group											28	ÏZ	nickel 59	46	Ъd	palladium 106	78	ħ	platinum 195	110	Ds	damstadtium 	
ŋ											27	ပိ	cobalt 59	45	Rh	rhodium 103	77	Ir	iridium 192	109	Mt	meitnerium -	
		-	т	hydrogen 1							26	Ъe	iron 56	44	Ru	ruthenium 101	76	os	osmium 190	108	Hs	hassium	
								_			25	Mn	manganese 55	43	Ч	technetium -	75	Re	rhenium 186	107	Bh	bohrium _	
						bol	ass				24	Ŋ	chromium 52	42	Mo	molybdenum 96	74	8	tungsten 184	106	Sg	seaborgium 	
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	qN	niobium 93	73	Та	tantalum 181	105	Db	dubnium 	
						atc	rela				22	F	titanium 48	40	Zr	zirconium 91	72	Η	hafnium 178	104	Ŗ	rutherfordium -	
											21	Sc	scandium 45	39	≻	yttrium 89	57-71	lanthanoids		89-103	actinoids		
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	S	strontium 88	56	Ba	barium 137	88	Ra	radium _	
	_				3	:	lithium 7	11	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	Ъ	francium 	

20

5070/22/M/J/21