

Cambridge International Examinations Cambridge Ordinary Level

CANDIDATE NAME												
 CENTRE NUMBER			CANI NUM	DIDATE BER								
CHEMISTRY					5070/22							
Paper 2 Theory	/			October/November 2018								
					1 hour 30 minutes							
Candidates ans	wer on the Questio	n Paper.										
No Additional M	aterials are require	d.										

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid. DO NOT WRITE IN ANY BARCODES.

Section A

Answer all questions. Write your answers in the spaces provided in the Question Paper.

Section B

Answer any three questions. Write your answers in the spaces provided in the Question Paper.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units. A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 18 printed pages and 2 blank pages.

Section A

Answer all the questions in this section in the spaces provided.

The total mark for this section is 45.

1 The electronic configurations of five atoms are shown.

(b) The element germanium has five naturally occurring isotopes.

An isotope of germanium is represented by the symbol shown.

$^{76}_{32}{ m Ge}$

(i)	What is the meaning of the term <i>isotopes</i> ?
	[1]
(ii)	Deduce the number of neutrons in one atom of this isotope of germanium.
	[1]
	[Total: 7]

2 Magnesium reacts with aqueous copper(II) sulfate.

 $Mg(s) + CuSO_4(aq) \rightarrow MgSO_4(aq) + Cu(s)$

(a) (i) Explain by referring to the equation, why this is a redox reaction.

.....[2]

- (ii) Construct the ionic equation for this reaction.
 -[1]
- (b) Pure copper can be made by the electrolysis of aqueous copper(II) sulfate, using one pure copper electrode and one impure copper electrode.

Draw a labelled diagram of this electrolysis.

(c) What observations are made when adding aqueous ammonia to a solution containing copper(II) ions, slowly with mixing, until no further change occurs?

.....[2]

(d) Blocks of magnesium are attached to underground pipes made of iron to stop them rusting.

Explain how the magnesium stops the pipes rusting.

.....[2]

3 The structure of fumaric acid is shown.

(a) How does this structure show that fumaric acid is an unsaturated compound?

.....[1]

(b) Fumaric acid is oxidised by acidified aqueous potassium manganate(VII).

What colour change would you observe in the reaction mixture when excess aqueous fumaric acid is added to acidified aqueous potassium manganate(VII)?

from[2]

(c) Fumaric acid is neutralised by aqueous sodium hydroxide.

 $C_2H_2(COOH)_2$ + 2NaOH \rightarrow $C_2H_2(COONa)_2$ + 2H₂O

(i) Write the ionic equation for this reaction.

.....[1]

(ii) Calculate the volume of 0.0500 mol/dm³ sodium hydroxide required to neutralise 20.0 cm³ of 0.0200 mol/dm³ fumaric acid.

Give your answer to three significant figures.

volume cm³ [3]

[Total: 7]

- 4 The alkenes are a homologous series of unsaturated hydrocarbons.
 - (a) Describe two characteristics of a homologous series.

 - (c) Draw the structure of a branched alkene with the formula C_4H_8 . Show all of the atoms and all of the bonds.

			[1]
(d)	But	ene reacts with hydrogen in the presence of nickel.	
	(i)	Name the product formed.	
			.[1]
	(ii)	What is the purpose of the nickel?	
			.[1]
	(iii)	State one other condition needed for this reaction.	
			.[1]

- (e) A hydrocarbon contains 85.7% carbon by mass.
 - (i) Deduce the empirical formula of this hydrocarbon.

[2]

(ii) What other piece of information is needed to deduce the molecular formula of this hydrocarbon?

.....[1]

8

- 5 The Periodic Table is an arrangement of elements in groups and periods.
 - (a) What are the factors that determine the position of an element in the Periodic Table?

(b) Phosphorus is an element in Group V of the Periodic Table.
Deduce the electronic configuration of a phosphide ion, P³⁻.
(c) Phosphine, PH₃, is a covalent compound.

(i) Draw a 'dot-and-cross' diagram of phosphine.

Only draw the outer shell electrons.

[2]

- (ii) Some properties of phosphine are listed.
 - gas at room temperature
 - almost insoluble in water
 - reacts with hydrogen chloride
 - has no effect on litmus paper
 - · decomposes to form hydrogen and phosphorus only when warmed gently

Describe two ways in which the properties of ammonia are **different** from those of phosphine.

1.
 2.
 [2]
(iii) Construct the equation for the thermal decomposition of phosphine.

.....[1]

(iv) Describe and explain the difference in the rate of diffusion of the gases ammonia and phosphine at the same temperature and pressure.

.....[1]

(v) Phosphine burns in oxygen to form phosphorus(V) oxide.

Is phosphorus(V) oxide an acidic, basic or amphoteric oxide? Give a reason for your answer.

.....[1]

Section **B**

Answer three questions from this section in the spaces provided.

The total mark for this section is 30.

6 Some properties of Group VI elements are shown.

element	density at room temperature in g/cm ³	melting point /°C	boiling point /°C	electrical conductivity of solid			
oxygen	0.0013	-219	-183	very poor			
sulfur	2.1	115	445	poor			
selenium		221	685	poor			
tellurium	6.2	450	988	quite good			
polonium	9.2	254	962	good			

Use the information in the table to suggest the density of selenium at room temperature. (a) (i)[1] Use the information in the table to deduce the physical state of oxygen at -190 °C. (ii) Explain your answer. physical state explanation [2] Describe the trend in the electrical conductivity of the Group VI elements. (b) (i)[1] There is a trend in the melting points of the Group VI elements. (ii) Which element does not follow this trend? Use the data in the table to explain your answer. element explanation[1] (c) Use the information in the table to explain how the structure and bonding in oxygen differs from the structure and bonding in polonium.

		[2]
(d)	Sulf	fur dioxide is an atmospheric pollutant.
	(i)	State one source of the sulfur dioxide in the atmosphere.
		[1]
	(ii)	Describe and explain how sulfur dioxide contributes to acid rain.
		[2]
		[Total: 10]

- Plants remove carbon dioxide from the air during photosynthesis. (a) (i) Complete the equation for photosynthesis. \cdots + \cdots O_2 + O_6 + O_2 [2] State two conditions required for photosynthesis to happen. (ii) 1. 2. [2] (iii) Explain how photosynthesis can provide a renewable energy source.[1] (b) The structure of a simple sugar is shown. но - OH Starch is made by the polymerisation of simple sugars. During this polymerisation, water is formed. What type of polymerisation occurs? (i)[1] (ii) Draw the partial structure of starch. You must show at least two repeat units. [2]
 - (iii) Name the process by which starch is converted into simple sugars.[1]

7

(c) The partial structure of poly(lactic acid) is shown.

On the diagram, draw a ring around all of the atoms in one ester linkage. [1]

- **8** Bismuth is a metallic element in Group V of the Periodic Table.
 - (a) Complete the diagram to show the structure and bonding in a typical metal.

Label your diagram.

(b) Describe three physical properties which are typical of most metals.

(c) Bismuth reacts with chlorine to form bismuth(III) chloride, $BiCl_3$.

Construct the equation for this reaction.

-[1]
- (d) When bismuth reacts with molten bismuth(III) chloride, an ion is formed.

The structure of this ion is shown.

Write the formula of this ion.

.....[1]

(e) A white precipitate of BiOCl is formed when colourless BiC l_3 is added to water.

 $BiCl_3(aq) + H_2O(I) \rightleftharpoons BiOCl(s) + 2HCl(aq)$

(i) Describe and explain what you would observe when a few drops of concentrated hydrochloric acid are added to this mixture.

(ii) Suggest why a change in pressure has no effect on the reaction shown. [1]
(f) Bismuth is used in alloys. What is the meaning of the term *alloy*? [1]
[Total: 10] 9 Sulfuric acid reacts with zinc to form zinc sulfate and hydrogen.

 $Zn(s) + H_2SO_4(aq) \rightarrow ZnSO_4(aq) + H_2(g)$

(a) Describe and explain, using ideas about collisions between particles, how the rate of this reaction changes when the concentration of sulfuric acid is increased.

All other conditions stay the same.

.....[2]

(b) Describe and explain, using ideas about collisions between particles, how the rate of this reaction changes when the temperature is decreased.

All other conditions stay the same.

.....[2]

(c) The reaction of zinc with sulfuric acid is exothermic.

Complete the energy profile diagram for this reaction to show the enthalpy change.

progress of reaction

[2]

(d) Calculate the maximum volume of hydrogen, in dm³, formed when 4.55g of zinc reacts with excess sulfuric acid at room temperature and pressure.

volume dm³ [2]

(e) The formula of zinc phosphate is $Zn_3(PO_4)_2$.

Calculate the percentage by mass of zinc in zinc phosphate.

......% [2]

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

<u> </u>
ġ
r.t
Ire
ssu
le
р
an
Ire
atı
Jer
Ĩ
ן te
oom terr
ţ
а
is 24 dm ³
24
<u>.</u>
volume of one mole of any gas is 24 dm 3 at room temperature and pressure (r.
any (
of a
<u>le</u>
Ĕ
one mole
of c
je
luπ
VO
he
F

	III	7	He	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	Ъ	krypton 84	54	Xe	xenon 131	86	Rn	radon -									
	١١٨				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	Ъ	bromine 80	53	Ι	iodine 127	85	At	astatine -				71	Lu	Iutetium 175	103	Ļ	lawrencium -
	N				8	0	oxygen 16	16	S	sulfur 32	34	Se	selenium 79	52	Те	tellurium 128	84	Ро	polonium –	116	2	livermorium –	20	Υb	ytterbium 173			
	>				7	z	nitrogen 14	15	٩	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	Ē	bismuth 209				69	Tm	thulium 169	101	Md	mendelevium -
	≥				9	ပ	carbon 12	14	Si	silicon 28	32	Ge	germanium 73	50	Sn	tin 119	82	Pb	lead 207	114	11	flerovium -	68	ц	erbium 167			
	≡				5	В	boron 11	13	Al	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204				67	Ю	holmium 165	66	Es	einsteinium –
											30	Zn	zinc 65	48	Cd	cadmium 112	80	Hg			Cn	8	99	Dy	dysprosium 163	86	Ç	califomium -
											29	Cu	copper 64	47	Ag	silver 108	29	Au	gold 197	111	Rg	roentgenium -	65	Тb	terbium 159	67	Ŗ	berkelium -
Group											28	ÏZ	nickel 59	46	Ъd	palladium 106	78	Ę	platinum 195	110	Ds	darmstadtium –	64	Gd	gadolinium 157	96	Cm	curium I
Ū					1						27	ပိ	cobalt 59	45	Rh	rhodium 103	77	Ir	iridium 192	109	Mt	meitnerium -	63	Еu	europium 152	95	Am	americium I
		- :	т	hydrogen 1							26	Бе	iron 56	44	Ru	ruthenium 101	76	os	osmium 190	108	Hs	hassium -	62	Sm	samarium 150	94	Pu	plutonium –
								_			25	Mn	manganese 55	43	Ц	technetium -	75	Re	rhenium 186	107	Bh	bohrium –	61	Pm	promethium -	93	Np	neptunium -
					-	lodi	SSE				24	ບັ	chromium 52	42	Мо	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -	60		neodymium 144	92	⊃	uranium 238
				Key	atomic number	atomic symbol	name relative atomic mass				23	>	vanadium 51	41	ЧN	niobium 93	73	Та	tantalum 181	105	Db	dubnium –	59	Pr	praseodymium 141	91	Ра	protactinium 231
						atc	e				22	F	titanium 48	40	Zr	zirconium 91	72	Ħ	hafnium 178	104	Ł	rutherfordium 	58	Ce	cerium 140	06	Th	thorium 232
		-									21	Sc	scandium 45	39	≻	yttrium 89	57-71	lanthanoids		89-103	actinoids		57	La	lanthanum 139	68	Ac	actinium -
	=	-			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ي ۲	strontium 88	56	Ba	barium 137	88	Ra	radium -		sids			s	
	_				e	:	lithium 7	=	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	Ľ	francium -		lanthanoids			actinoids	

The Periodic Table of Elements

5070/22/O/N/18