

Cambridge O Level

CANDIDATE NAME	
CENTRE NUMBER	CANDIDATE NUMBER
CHEMISTRY	5070/2 ⁻
Paper 2 Theory	October/November 2020

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Section A: answer **all** questions.
- Section B: answer three questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

1 hour 30 minutes

Section A

Answer all the questions in this section in the spaces provided.

The total mark for this section is 45.

1 Choose from the following compounds to answer the questions.

aluminium iodide ethanol glucose lead(IV) chloride lithium bromide magnesium carbonate methane potassium phosphate silver nitrate sodium sulfate sulfur dioxide

Each compound may be used once, more than once or not at all.

Which compound:

- (a) produces ammonia when its aqueous solution is warmed with aqueous sodium hydroxide and aluminium
 [1]
- (b) contains ions with a 1– charge which are present in many fertilisers [1]
- (c) contains ions with a 2+ charge
-[1]
- (d) forms an orange colour when it reacts with chlorine in aqueous solution
 [1]
- (e) is a hydrocarbon that is formed from the bacterial decay of vegetable matter?

2 Part of the structures of carbon dioxide and calcium carbide are shown.

(a) Explain in terms of structure and bonding why carbon dioxide has a low boiling point and calcium carbide has a high boiling point.

(b) Calcium carbide, CaC₂, reacts with water to form ethyne, C₂H₂, and calcium hydroxide.
Construct the equation for this reaction.
[1]
(c) Ethyne is an unsaturated hydrocarbon.
State the meaning of the term *hydrocarbon*.
[1]

(d) Ethyne is a member of the alkyne homologous series.

The molecular formulae of the first four members of the alkyne homologous series are shown.

 C_2H_2 C_3H_4 C_4H_6 C₅H₈

Predict the formula for the fifth member of the alkyne homologous series.

......[1]

(e) Ethyne reacts with hydrogen in a similar way to ethene reacting with hydrogen.

The reaction between ethyne and hydrogen is exothermic.

- (i) What type of chemical reaction occurs when ethyne reacts with hydrogen?
 -[1]
- (ii) Predict the molecular formula of a product formed when ethyne reacts with hydrogen. [1]
- (f) 1,2-dichloroethene is produced when excess ethyne reacts with chlorine.

The structure of 1,2-dichloroethene is shown.

$$\begin{array}{ccc} Cl & Cl \\ | & | \\ C = C \\ | & | \\ H & H \end{array}$$

Deduce the partial structure of the polymer of 1,2-dichloroethene.

Show three repeat units.

[Total: 10]

3	This	s que	estion is about copper and copper compounds.	
	(a)	Cop	oper is a metal.	
		Exp	lain why copper conducts electricity.	
				[1]
	(b)	Des	scribe a test for copper(II) ions.	
		test		
		obs	ervations	[2]
	(c)	Aqu	leous copper(II) sulfate is electrolysed using graphite electrodes.	
		(i)	Describe what is observed during this electrolysis:	
			at the positive electrode	
			at the negative electrode	
			• in the electrolyte.	
				[3]
		(ii)	Graphite conducts electricity.	
			Give one other reason why graphite electrodes are used in electrolysis.	
				[1]
	(d)	Aqu	eous copper(II) sulfate reacts with magnesium.	
			$CuSO_4$ + Mg \rightarrow Cu + MgSO_4	
		Cor	nstruct the ionic equation, including state symbols, for this reaction.	

.....[2]

(e) A 2.25g sample of an oxide of copper contains 0.250g of oxygen.

Deduce the empirical formula of this oxide of copper.

		[3]
(f)	There are several commonly used alloys of copper.	
	What is the meaning of the term <i>alloy</i> ?	
		. [1]
	[Total	: 13]

- 4 This question is about halogens and halogen compounds.
 - (a) A drop of bromine liquid was placed in a sealed glass jar.

After a time, the colour of the bromine had spread throughout the jar.

Explain this observation in terms of the kinetic particle theory.

[3]

- (b) Chlorine, bromine and iodine are halogens.
 - (i) State the trend in the colour of the halogens from chlorine to iodine.

- - iodine[1]
- (iii) Chlorine is used to make other chemicals.

State one other use of chlorine.

......[1]

(c) The molecular structure of a compound of iodine and chlorine is shown.

Deduce the molecular formula of this compound.

......[1]

(d) Fluorine reacts with aqueous sodium hydroxide to produce sodium fluoride, NaF, water and oxygen.

 $2F_2$ + 4NaOH \rightarrow 4NaF + $2H_2O$ + O_2

Calculate the maximum volume of oxygen produced, in dm³, at room temperature and pressure, when 0.037 mol of sodium hydroxide react completely with fluorine.

Give your answer to **two** significant figures.

volume of oxygen dm³ [2]

[Total: 9]

- 5 Platinum and vanadium are both transition elements.
 - (a) Transition elements are metals which are hard, strong and have high melting points and boiling points.

State two other properties which are typical of transition elements but not of all metals.

1 2

- (b) Vanadium(V) oxide, V_2O_5 , is a catalyst in the Contact process.
 - (i) State how a catalyst increases the rate of a chemical reaction.

.....

-[1]
- (ii) State the conditions used in the Contact process.

(c) Vanadium(V) oxide is reduced to vanadium by heating with aluminium.

Complete the equation for this reaction.

$$3V_2O_5 + \dots Al \rightarrow \dots V + \dots Al_2O_3$$
 [1]

- (d) A fuel cell generates electricity when hydrogen and oxygen react on platinum electrodes.
 - (i) Name the process used in industry to separate oxygen from air.

......[1]

(ii) The reaction at one of the electrodes in the fuel cell is shown.

 O_2 + $2H_2O$ + $4e^- \rightarrow 4OH^-$

State whether this is an oxidation or reduction reaction.

Explain your answer.

......[1]

[Total: 8]

[2]

Section B

Answer three questions from this section in the spaces provided.

The total mark for this section is 30.

6 (a) The table shows some properties of five alcohols.

alcohol	formula	density in g/cm ³	boiling point in °C
methanol	CH ₃ OH	0.791	65
ethanol	C ₂ H ₅ OH	0.789	79
propanol	C ₃ H ₇ OH	0.803	97
butanol	C ₄ H ₉ OH	0.810	117
pentanol	C ₅ H ₁₁ OH	0.814	138

(i) What is the general trend in the density of the alcohols as the number of carbon atoms in a molecule increases?

.....

......[1]

(ii) Describe and explain the change in the boiling point of the alcohols as the number of carbon atoms in a molecule increases.

......[1]

(b) Ethanol, C_2H_5OH , reacts with butanoic acid, $C_3H_7CO_2H$, to produce an ester.

A few drops of a strong acid are added to catalyse the reaction.

(i) What does the term strong mean, when applied to acids?

......[1]

(ii) Name and draw the structure of the ester produced when ethanol reacts with butanoic acid, showing all of the atoms and all of the bonds.

namestructure

		[2	2]
(c)	Etha	anol can be oxidised to ethanoic acid in the laboratory.	
	Stat	e the reagents and conditions used in this reaction.	
	reag	gent	
	con	ditions[2	 2]
(d)	Con	centrated ethanoic acid, CH ₃ CO ₂ H, reacts with calcium.	
	The	products are calcium ethanoate and hydrogen.	
	(i)	Construct the equation for this reaction.	
		[1]
	(ii)	State and explain how the rate of this reaction changes when the experiment is repeate using dilute ethanoic acid.	d
		All other conditions stay the same.	
		Include in your answer ideas about collisions between particles.	
		[2	2]
		[Total: 10)]

- 7 Aluminium is extracted by the electrolysis of molten aluminium oxide.
 - (a) (i) Explain why aluminium is extracted by electrolysis and not by reduction with carbon.
 - - (i) Use this equation to explain why the Al_2O_3 is reduced.

(ii) Calculate the maximum mass of aluminium formed when 25.5g of aluminium oxide reacts with excess magnesium.

mass of aluminium = g [2]

(c) Aluminium is a metal.

Use your knowledge of the structure of metals to explain why aluminium is malleable.

.....[2]

(d) When aluminium is heated in chlorine, aluminium chloride is formed.

The reaction is exothermic.

Explain, in terms of bond making and bond breaking, why this reaction is exothermic.

[2] [Total: 10] 8 (a) Dilute nitric acid reacts with aqueous barium hydroxide.

 $2HNO_3(aq) + Ba(OH)_2(aq) \rightarrow Ba(NO_3)_2(aq) + 2H_2O(I)$

(i) A student titrates 25.0 cm³ of dilute nitric acid with 0.0450 mol/dm³ barium hydroxide using methyl orange as an indicator.

A volume of 34.0 cm³ of aqueous barium hydroxide reacts exactly with the dilute nitric acid.

Calculate the concentration of the dilute nitric acid.

concentration of nitric acid mol/dm³ [3]

(ii) Describe how to prepare pure dry crystals of barium nitrate from aqueous barium nitrate.

.....

.....

.....[3]

(b) Barium nitrate decomposes when heated to form barium oxide, BaO, nitrogen dioxide, NO₂, and oxygen.

Construct the equation for this reaction.

-[1]
- (c) Nitrogen dioxide is an atmospheric pollutant which causes 'acid rain'.

Describe one effect of acid rain on buildings.

......[1]

- (d) Hydrazine, $H_2N NH_2$, is a colourless liquid.
 - (i) Draw a dot-and-cross diagram for a molecule of hydrazine.

Include only the outer shell electrons.

(ii)	The melting point of hydrazine is 2 °C. The boiling point of hydrazine is 114 °C.
	Use this information to suggest why hydrazine is a solid at 0 °C.
	[1]
	[Total: 10]

[1]

- **9** Calcium is a metal in Group II of the Periodic Table.
 - (a) Calcium can be used as a reducing agent.

Describe a test for reducing agents.

testobservations

[2]

[2]

(b) An ion of calcium has the symbol

⁴⁴₂₀Ca²⁺

Deduce the number of electrons and neutrons in this ion.

number of electrons

(c) When calcium carbonate is heated in a closed container, an equilibrium mixture is formed.

 $CaCO_3(s) \iff CaO(s) + CO_2(g)$

The forward reaction is endothermic.

(i) Describe and explain the effect, if any, on the position of equilibrium when a hole is made in the container.

-[2]
- (ii) Describe and explain the effect, if any, on the position of equilibrium when the temperature is increased.

(d) When heated, calcium oxide reacts with chlorine to form calcium chloride and a gas which relights a glowing splint.

Complete the equation for this reaction.

 $2CaO + \dots CaCl_2 + \dots CaCl_2$ [1]

(e) Calcium chloride is soluble in water.

Name one **other** calcium salt which is soluble in water.

......[1]

[Total: 10]

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

с.
r.t
ure (r.
essure
SSS
ore
rature and _p
ar
Ire
atr
ere
μ
tei
oom terr
õ
at
s is 24 dm
24
<u>.</u>
as
2 D
mole of any
of
<u>e</u>
Ĕ
e
p
of
e volume of one mole of any gas is 24 dm 3 at room temperature and press
Ini
>
he
F

								Group	dn								
_	=											≡	≥	>	N	١١	VIII
							-										2
							т										He
				Key			hydrogen 1										helium 4
	4			atomic number		L						5	9	7	8	6	10
	Be		ato	atomic symbol	loc							В	ပ	z	0	LL	Ne
lithium 7	beryllium 9		rela	name relative atomic mass	SS							boron 11	carbon 12	nitrogen 14	oxygen 16	fluorine 19	neon 20
	12											13	14	15	16	17	18
Na	Mg											Al	Si	٩	თ	Cl	Ar
sodium 23	magnesium 24											aluminium 27	silicon 28	phosphorus 31	sulfur 32	chlorine 35.5	argon 40
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
×	Ca	Sc	i	>	ບັ	Мп	Fе	ပိ	ïZ	Cu	Zn	Ga	Ģ	As	Se	Br	Ъ
potassium 39	calcium 40	scandium 45	titanium 48	vanadium 51	chromium 52	manganese 55	iron 56	cobalt 59	nickel 59	copper 64	zinc 65	gallium 70	germanium 73	arsenic 75	selenium 79	bromine 80	krypton 84
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	S	≻	Zr	ЧN	Mo	ц	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
rubidium 85	strontium 88	yttrium 89	zirconium 91	niobium 93	molybdenum 96	technetium -	ruthenium 101	rhodium 103	palladium 106	silver 108	cadmium 112	indium 115	tin 119	antimony 122	tellurium 128	iodine 127	xenon 131
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	lanthanoids	Ηf	Та	≥	Re	Os	Ir	Ę	Au	Hg	11	Pb	<u>B</u>	Ро	At	Rn
caesium 133	barium 137		hafnium 178	tantalum 181	tungsten 184	rhenium 186	osmium 190	iridium 192		gold 197		thallium 204	lead 207	bismuth 209	polonium –	astatine -	radon
87	88	89-103	104	105	106	107	108	109		111			114		116		
Ľ	Ra	actinoids	Rf	Db	Sg	Bh	Hs	Mt		Rg			11		L<		
francium -	radium -		rutherfordium -	dubnium –	seaborgium -	bohrium –	hassium -	meitnerium -	Б	roentgenium -			flerovium -		livermorium -		
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
lanthanoids	ds	La	Ce	Pr	Nd	Pm	Sm	Еu	Gd	Tb	Dy	Ч	ц	Тп	Υb	Lu	
		lanthanum 139	cerium 140	praseodymium 141	neodymium 144	promethium -	samarium 150	europium 152	gadolinium 157	terbium 159	dysprosium 163	holmium 165	erbium 167	thulium 169	ytterbium 173	lutetium 175	
		89	06	91	92	93	94	95	96	97	98	66	100	101	102	103	
actinoids		Ac	Th	Ра		Np	Pu	Am	Cm	Bk	ç	Еs	ЕШ	Md	No	Ļ	
		actinium -	thorium 232	protactinium 231	uranium 238	neptunium -	plutonium –	americium I	curium I	berkelium -	califomium -	einsteinium –	fermium -	mendelevium -	nobelium -	lawrencium -	

The Periodic Table of Elements

5070/21/O/N/20