

Cambridge O Level

	CANDIDATE NAME		
	CENTRE NUMBER		CANDIDATE NUMBER
Υ Υ Γ	CHEMISTRY		5070/22
4	Paper 2 Theory		October/November 2020
1 б			1 hour 30 minutes
1548165264*	You must answe	er on the question paper.	
*	No additional ma	aterials are needed.	

INSTRUCTIONS

- Section A: answer **all** questions. •
- Section B: answer three questions. •
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. •
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided. •
- Do not use an erasable pen or correction fluid. •
- Do **not** write on any bar codes. •
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 75. •
- The number of marks for each question or part question is shown in brackets []. •
- The Periodic Table is printed in the question paper. •

Section A

Answer all the questions in this section in the spaces provided.

The total mark for this section is 45.

1 Choose from the following compounds to answer these questions.

aluminium sulfate ammonia calcium carbonate carbon dioxide chlorofluorocarbons copper(II) sulfate hydrogen chloride potassium nitrate sodium chloride

Each compound may be used once, more than once or not at all.

Which compound:

(a)	is a gas which dissolves in water to form an alkaline solution	
		[1]
(b)	is an anhydrous solid which is used to test for water	
		[1]
(c)	contains ions with a 3+ charge	
		[1]
(d)	is a solid used in flue gas desulfurisation	
		[1]
(e)	causes eutrophication?	
		[1]
	[Tota	l: 5]

2 Part of the structures of chlorine and sodium chloride are shown.

(a) Explain in terms of structure and bonding why chlorine has a low boiling point and sodium chloride has a high boiling point.

		[3]
(b)	Writ	e the electronic configuration of a chlorine atom.
		[1]
(c)	The	electrolysis of molten sodium chloride is carried out using graphite electrodes.
	(i)	State the meaning of the term <i>electrolysis</i> .
		[1]
	(ii)	State the direction of movement of both the positive and negative ions when molten sodium chloride is electrolysed.
		positive ions
		negative ions
		[1]

(iii) State one observation that can be made at the positive electrode when molten sodium chloride is electrolysed.

(iv) Give the formulae of the two negative ions present in aqueous sodium chloride.

(d) When aqueous sodium chloride is electrolysed, hydrogen is produced at the negative electrode.

Explain, in terms of transfer of electrons, why hydrogen and **not** sodium is produced at the negative electrode.

......[1]

- (e) A 36.3g sample of a compound contains 14.4g carbon, 0.600g hydrogen and 21.3g chlorine.
 - (i) Calculate the empirical formula of this compound.

(ii) The relative molecular mass of this compound is 181.5.

Deduce the molecular formula of this compound.

[Total: 12]

3	(a)	A dr	op of black ink is placed at the bottom of a beaker of water.
		Afte	r a time, the colour of the ink spreads throughout the water.
		Exp	lain this observation in terms of the kinetic particle theory.
			[3]
	(b)	In th	ne past, ink was made from a mixture containing iron(II) ions and tannic acid.
		(i)	Describe a test for iron(II) ions.
			test
			observations[2]
		(ii)	The ink darkens when used on paper. This is because iron(II) ions are oxidised to iron(III) ions.
			Write the ionic equation for this reaction.
			[1]
		(iii)	After a time, the ink fades because of a hydrolysis reaction which is catalysed by acids.
			State how a catalyst increases the rate of a chemical reaction.
			[1]
	(c)	Pap	er is made of cellulose.
		Cell	ulose is a complex carbohydrate (polysaccharide).
		(i)	Name one other complex carbohydrate (polysaccharide).
		(ii)	Describe how complex carbohydrates can be hydrolysed to simple sugars.
			[Total: 10]

[Turn over

- **4** Water from natural sources contains dissolved substances which are not pollutants, such as mineral salts.
 - (a) Name another substance found naturally in water which is **not** a mineral salt or a pollutant.

......[1]

(b) When lithium reacts with water, aqueous lithium hydroxide, LiOH, and hydrogen are formed.

Construct the equation for this reaction.

-[1]
- (c) Sodium and potassium react with water in a similar way to lithium.
 - (i) Explain, in terms of their electronic configuration, why lithium, sodium and potassium all react in a similar way.

......[1]

- (ii) Describe the trend in reactivity of the Group I elements lithium, sodium and potassium.
 [1]
- (d) Water and oxygen are formed when aqueous hydrogen peroxide decomposes.

 $2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$

Calculate the maximum volume of oxygen, at room temperature and pressure, which is produced by the complete decomposition of a solution containing 16.0g of hydrogen peroxide.

Give your answer to three significant figures.

volume of oxygen dm³ [3]

- (e) A fuel cell generates electricity when hydrogen and oxygen react on platinum electrodes.
 - (i) Name a process used in industry to produce hydrogen.

	[1]
(ii)	Some cars use a hydrogen-oxygen fuel cell instead of a petrol (gasoline) engine as a source of energy.
	Describe two advantages of a hydrogen-oxygen fuel cell compared with a petrol (gasoline) engine.
	1
	2[2]

[Total: 10]

8

5 Alkenes are made in an oil refinery by cracking hydrocarbons.

- (a) (i) Give one other reason why petroleum companies carry out cracking.
 - -[1]
 - (ii) Complete the equation for the cracking of tridecane, $C_{13}H_{28}$, to form propene, C_3H_6 , and one other hydrocarbon.

$$C_{13}H_{28} \rightarrow C_{3}H_{6} + \dots$$
[1]

(b) Propene is an alkene.

(i) Write the general formula for an alkene.

......[1]

(ii) Propene reacts with steam by an addition reaction.

Predict the molecular formula of the product of this reaction.

-[1]
- (iii) When propene undergoes incomplete combustion, a small amount of carbon dioxide is formed.

Name two other substances formed when propene undergoes incomplete combustion.

..... and

(c) The structure of propene is shown.

Deduce the partial structure of poly(propene) to show three repeat units.

[2]

Section B

9

		Answer three questions from this section in the spaces provided.
		The total mark for this section is 30.
Me	thand	pic acid and ethanoic acid are weak acids.
(a)	Wh	at does the term weak mean, when applied to acids?
		[1]
(b)	Met	thanoic acid, HCO ₂ H, reacts with magnesium powder.
	(i)	Construct the equation for this reaction.
		[1]
	(ii)	State and explain how the rate of this reaction changes when the experiment is repeated using a piece of magnesium ribbon with the same mass as the powder.
		All other conditions stay the same.
		Include in your answer ideas about collisions between particles.
(c)	Met	thanoic acid reacts with propanol, C ₃ H ₇ OH, to form an ester.
	Nar	ne and draw the structure of this ester, showing all of the atoms and all of the bonds.
	nan	ne
	stru	icture

- (d) Ethanoic acid is present in vinegar.
 - (i) Name the organic compound which is converted to ethanoic acid when vinegar is made.
 -[1]
 - (ii) What type of chemical reaction is this?

(e) The table shows some properties of four carboxylic acids.

carboxylic acid	formula	density in g/cm ³	boiling point in °C
methanoic acid	HCO ₂ H	1.22	101
ethanoic acid	CH ₃ CO ₂ H		118
propanoic acid	C ₂ H ₅ CO ₂ H	0.99	141
butanoic acid	C ₃ H ₇ CO ₂ H	0.96	164

(i) Predict the density of ethanoic acid.

(ii) Describe and explain the change in the boiling point as the number of carbon atoms in a molecule increases.

......[1]

[Total: 10]

- 7 Iron is extracted from iron ore in a blast furnace using limestone and coke (carbon).
 - (a) Name a common ore of iron.
 (b) The coke burns to form carbon dioxide.
 This reaction is exothermic.

Explain, in terms of bond making and bond breaking, why this reaction is exothermic.

- (c) Carbon dioxide reacts with hot coke to form carbon monoxide.

The carbon monoxide reduces the iron(III) oxide in the iron ore.

 $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$

(i) Use this equation to explain why the Fe_2O_3 is reduced.

(ii) Calculate the maximum mass of iron formed when 12.5g of iron(III) oxide react with excess carbon monoxide.

mass of irong [2] Explain how the addition of limestone helps remove silicon dioxide from the blast furnace.
[2]
(e) Iron is a metal.
Describe metallic bonding.
[2]
[Total: 10]

(d) Silicon dioxide is an impurity in the iron ore.

- 8 This question is about some compounds of sulfur.
 - (a) Dilute sulfuric acid reacts with aqueous sodium hydroxide as shown.

 $H_2SO_4(aq) + 2NaOH(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(l)$

(i) A student titrates 25.0 cm³ of dilute sulfuric acid with sodium hydroxide of concentration 0.0150 mol/dm³, using litmus as an indicator.

A volume of $24.0\,\text{cm}^3$ of aqueous sodium hydroxide reacts exactly with the dilute sulfuric acid.

Calculate the concentration of the dilute sulfuric acid.

concentration of dilute sulfuric acid mol/dm³ [3]

(ii) Describe how to prepare pure dry crystals of sodium sulfate from aqueous sodium sulfate.

(b) Concentrated sulfuric acid oxidises arsenic to arsenic(III) oxide.

Complete the equation for this reaction.

 $\dots As + \dots H_2SO_4 \rightarrow As_4O_6 + \dots H_2O + 6SO_2$ [1]

(c) Sulfur dichloride, Cl - S - Cl, has a simple molecular structure.

Complete the dot-and-cross diagram for a molecule of sulfur dichloride.

Include only the outer shell electrons.

(d) The melting point of sulfur dichloride is -121°C. The boiling point of sulfur dichloride is 59°C.

Deduce the state of sulfur dichloride at room temperature.

Give a reason for your answer.

......[2]

[Total: 10]

[1]

Question 9 starts on the next page.

- **9** Lead is a metal in Group IV of the Periodic Table.
 - (a) An ion of lead has the symbol

²⁰⁷₈₂Pb²⁺

Deduce the number of electrons and neutrons in this ion.

number of electrons
number of neutrons

[2]

[2]

- **(b)** Lead(IV) oxide, PbO_2 , is an oxidising agent.
 - (i) Describe a test for oxidising agents.

observations

(ii) Lead(IV) oxide reacts with concentrated hydrochloric acid to form lead(IV) chloride, $PbCl_4$, and water.

Construct the equation for this reaction.

.....[1]

(c) When lead(IV) chloride is warmed in a closed container an equilibrium mixture is formed.

The forward reaction is exothermic.

 $PbCl_4(I) \iff PbCl_2(s) + Cl_2(g)$ lead(IV) chloride lead(II) chloride

(i) Describe and explain the effect, if any, on the position of equilibrium when the concentration of chlorine is increased.

BLANK PAGE

BLANK PAGE

19

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

ġ
r.t
sure (r.t
SSL
Je
þ
ar
ture and p
ratı
be
em
oom tem
00
atr
ц
4 dr
5
 S
ga
of any gas is 24 dm ^{3} e
of a
<u>e</u>
Ĕ
ne
of o
le of one
e volume of one mole of any gas is 24 dm 3 at room temperature and press
Vo
he
F

								Group	dn								
	=											≡	≥	>	N	١١	VIII
							-										2
							т										He
				Key			hydrogen 1										helium 4
	4			atomic number		L						5	9	7	8	6	10
	Be		ato	atomic symbol	loc							В	ပ	z	0	LL	Ne
lithium 7	beryllium 9		rela	name relative atomic mass	SS							boron 11	carbon 12	nitrogen 14	oxygen 16	fluorine 19	neon 20
	12											13	14	15	16	17	18
Na	Mg											Al	Si	٩	თ	Cl	Ar
sodium 23	magnesium 24											aluminium 27	silicon 28	phosphorus 31	sulfur 32	chlorine 35.5	argon 40
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
X	Ca	Sc	i	>	ບັ	Мп	Fе	ပိ	ïZ	Cu	Zn	Ga	Ģ	As	Se	Br	Ъ
potassium 39	calcium 40	scandium 45	titanium 48	vanadium 51	chromium 52	manganese 55	iron 56	cobalt 59	nickel 59	copper 64	zinc 65	gallium 70	germanium 73	arsenic 75	selenium 79	bromine 80	krypton 84
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	S	≻	Zr	ЧN	Mo	ц	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
rubidium 85	strontium 88	yttrium 89	zirconium 91	niobium 93	molybdenum 96	technetium -	ruthenium 101	rhodium 103	palladium 106	silver 108	cadmium 112	indium 115	tin 119	antimony 122	tellurium 128	iodine 127	xenon 131
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	lanthanoids	Ηf	Та	≥	Re	Os	Ir	Ę	Au	Hg	11	Pb	<u>B</u>	Ро	At	Rn
caesium 133	barium 137		hafnium 178	tantalum 181	tungsten 184	rhenium 186	osmium 190	iridium 192		gold 197		thallium 204	lead 207	bismuth 209	polonium –	astatine -	radon
87	88	89-103	104	105	106	107	108	109		111			114		116		
Ļ	Ra	actinoids	Rf	Db	Sg	Bh	Hs	Mt		Rg			11		L<		
francium -	radium -		rutherfordium -	dubnium –	seaborgium -	bohrium –	hassium -	meitnerium -	Б	roentgenium -			flerovium -		livermorium -		
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
lanthanoids	ds	La	Ce	Pr	Nd	Ът	Sm	Еu	Gd	Tb	Dy	Ч	ц	Тп	Υb	Lu	
		lanthanum 139	cerium 140	praseodymium 141	neodymium 144	promethium -	samarium 150	europium 152	gadolinium 157	terbium 159	dysprosium 163	holmium 165	erbium 167	thulium 169	ytterbium 173	lutetium 175	
		89	06	91	92	93	94	95	96	97	98	66	100	101	102	103	
actinoids		Ac	Th	Ра	⊃	Np	Pu	Am	Cm	BK	Ç	Es	Еn	Мd	No	Ļ	
		actinium -	thorium 232	protactinium 231	uranium 238	neptunium -	plutonium –	americium I	curium I	berkelium -	califomium -	einsteinium –	fermium -	mendelevium -	nobelium -	lawrencium -	

The Periodic Table of Elements

5070/22/O/N/20