

Cambridge O Level

CANDIDATE NAME		
CENTRE NUMBER		CANDIDATE NUMBER
CHEMISTRY		5070/21
Paper 2 Theory		October/November 2021
		1 hour 30 minutes
You must answe	er on the question paper.	
No additional m	atoriale are peoded	

No additional materials are needed.

INSTRUCTIONS

- Section A: answer **all** questions. •
- Section B: answer three questions. •
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. •
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided. •
- Do not use an erasable pen or correction fluid. •
- Do **not** write on any bar codes. •
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 75. •
- The number of marks for each question or part question is shown in brackets []. •
- The Periodic Table is printed in the question paper. •

Section A

Answer **all** the questions in this section in the spaces provided.

The total mark for this section is 45.

1 Choose from the following oxides to answer the questions.

aluminium oxide calcium oxide iron(II) oxide magnesium oxide silicon dioxide sodium oxide sulfur dioxide

Each oxide may be used once, more than once or not at all.

State which oxide:

(a)	has a simple molecular structure	
		[1]
(b)	is a coloured solid	
		[1]
(c)	contains ions with a 3+ charge	
		[1]
(d)	is a product of the thermal decomposition of calcium carbonate	
		[1]
(e)	contributes to acid rain.	
		[1]
	[Total	: 5]

- 2 Dry air contains nitrogen, oxygen, noble gases and carbon dioxide.
 - (a) State the percentage of oxygen present in dry air.
 -[1]
 - (b) Carbon dioxide is removed from a sample of air by passing the air through aqueous sodium hydroxide.

Explain why aqueous sodium hydroxide removes carbon dioxide from air.

-[2]
- (c) Describe how oxygen, nitrogen and the noble gases are separated from each other after carbon dioxide has been removed.

(d) Describe the test for oxygen.

observation

- (e) Ozone, O₃, is formed in the atmosphere by the reaction of nitrogen dioxide with oxygen in the presence of ultraviolet light.
 - (i) State the type of chemical reaction that takes place when ozone is formed in this way.
 [1]
 - (ii) Nitrogen dioxide is formed in internal combustion engines.

State one other source of nitrogen dioxide in the atmosphere.

......[1]

(f) A layer of ozone is present high in the atmosphere.

State one problem for humans that can arise if the ozone layer is depleted by CFCs.

......[1]

[Total: 10]

[2]

3 Iron powder reacts with dilute sulfuric acid.

$$Fe(s) + H_2SO_4(aq) \rightarrow FeSO_4(aq) + H_2(g)$$

(a) The graph shows the volume of hydrogen gas produced at 20 °C as the reaction proceeds.

- (i) State how long it takes from the start of the experiment to collect 18 cm³ of hydrogen gas.
 -[1]
- (ii) The experiment is repeated at 30 °C.

All other conditions are the same.

Draw a line **on the grid** to show how the volume of hydrogen gas produced changes with time when the reaction is done at 30 °C. [2]

(b) (i) Describe and explain, using ideas about collisions between particles, how the rate of the reaction changes when the temperature of the reaction mixture is increased.

All other conditions are the same.

(ii) Describe and explain, using ideas about collisions between particles, how the rate of the reaction changes when larger pieces of iron are used.

All other conditions are the same.

(c) Calculate the maximum volume, in dm³, of hydrogen formed when 3.36g of iron react with excess dilute sulfuric acid at room temperature and pressure. Give your answer to **three** significant figures.

	maximum volume = dm ³ [2]
(d)	Concentrated sulfuric acid is an oxidising agent.
	Describe a test for oxidising agents.
	test
	observations
	[2]

[Total: 11]

- 4 Alkenes are a homologous series of hydrocarbons.
 - (a) Alkenes are produced by cracking.
 State the meaning of the term *cracking*.
 [2]
 (b) Margarine is manufactured from vegetable oils using a nickel catalyst.
 (i) Name the other reactant used in this reaction.
 [1]
 (ii) State the type of chemical reaction which occurs when margarine is manufactured from vegetable oils.
 [1]
 (c) Ethanol is produced by the reaction.
 [1]
 (c) Ethanol is produced by the reaction.

[1]

(d) An organic compound contains 54.5% carbon, 9.10% hydrogen and 36.4% oxygen by mass.Calculate the empirical formula of this compound.

empirical formula[2]

[Total: 7]

5 Magnesium undergoes oxidation when it reacts with aqueous silver nitrate.

 $\mathrm{Mg} \ + \ 2\mathrm{Ag}^{+} \ \longrightarrow \ \mathrm{Mg}^{2+} \ + \ 2\mathrm{Ag}$

(a) Explain how this equation shows that magnesium is oxidised.

......[1]

(b) The reaction of magnesium with silver nitrate is exothermic.

Complete the energy profile diagram for this reaction.

Label reactants, products and ΔH .

progress of reaction

[2]

(c) Acidified aqueous silver nitrate is added to a solution containing halide ions. A yellow precipitate is observed.

State the name of the halide ion present in the solution.

......[1]

(d) Silver is a metal.

Use your knowledge of the structure of metals to explain why silver is malleable.

......[2]

(e) The table gives information about the thermal decomposition of some metal carbonates.

metal carbonate	ease of thermal decomposition
calcium carbonate	decomposes at 900 °C
magnesium carbonate	decomposes at 540 °C
sodium carbonate	does not decompose below 1000 °C

Describe how the ease of thermal decomposition depends on the position of these metals in the reactivity series.

......[1]

[Total: 7]

9

6 Chlorine reacts with phosphorus to form phosphorus(III) chloride.

 $3Cl_2 + 2P \rightarrow 2PCl_3$

The reaction is exothermic.

(a) Explain in terms of bond breaking and bond forming why the reaction is exothermic.

[2]

(b) (i) When chlorine reacts with aqueous potassium iodide a brown solution is formed. Name the products of this reaction.

(ii) When aqueous bromine is added to potassium chloride there is no reaction.

Explain why there is no reaction.

......[1]

(c) Phosphorus(III) chloride reacts with water to form a mixture of phosphorous acid, H_3PO_3 , and hydrochloric acid.

Construct the equation for this reaction.

......[1]

[Total: 5]

Section B

Answer three questions from this section in the spaces provided.

The total mark for this section is 30.

- 7 This question is about metals and metal compounds.
 - (a) Silver is a transition element. Potassium is a metal in Group I of the Periodic Table.

State two differences in the physical properties of silver and potassium.

- 1
- 2[2]
- (b) An ion of silver has the symbol

¹⁰⁹₄₇Ag⁺

Deduce the number of protons, neutrons and electrons in this ion.

(c) Potassium reacts with water to form a gas which 'pops' with a lighted splint.

Complete the equation for this reaction.

$$\dots K + \dots H_2 O \rightarrow 2KOH + \dots$$
[1]

(d) When zinc carbonate is warmed in a closed container, an equilibrium mixture is formed.

 $ZnCO_3(s) \iff ZnO(s) + CO_2(g)$

The forward reaction is endothermic.

(i) Describe and explain the effect, if any, on the position of equilibrium when the temperature is decreased.

[2]

(ii) Describe and explain the effect, if any, on the position of equilibrium when the concentration of carbon dioxide is increased.

.....[2]

[Total: 10]

8 The structure of angelic acid is shown.

(a)	Exp	lain how this structure shows that angelic acid is an unsaturated compound.	
			[1]
(b)	Ded	uce the molecular formula of angelic acid.	
			[1]
(c)	Ang	elic acid is a weak acid.	
	(i)	Define the term acid.	
			[1]
	(ii)	Explain the meaning of the term weak as applied to acids.	
			[1]

- (d) Angelic acid can be polymerised.
 - (i) State the name of the type of polymerisation that occurs.
 -[1]
 - (ii) Draw the partial structure of the polymer of angelic acid. Show two repeat units.

[2]

(e) Angelic acid reacts with methanol, CH_3OH , to form an ester.

Complete the structure of this ester to show all the atoms and all the bonds.

[1]

(f) Construct the equation for the complete combustion of methanol.

......[2]

[Total: 10]

- 9 This question is about ammonia and nitrates.
 - (a) State the source of the hydrogen and nitrogen used in the manufacture of ammonia by the Haber process.

(b) Ammonia is formed when aqueous ammonium sulfate is heated with sodium hydroxide.

 $(NH_4)_2SO_4 + 2NaOH \rightarrow 2NH_3 + Na_2SO_4 + 2H_2O$

A student adds 4.50 g of sodium hydroxide to $50.0 \, \text{cm}^3$ of $1.25 \, \text{mol}/\text{dm}^3$ aqueous ammonium sulfate.

Show by calculation that the ammonium sulfate is in excess.

(c) When dilute sodium hydroxide is electrolysed, the hydroxide ions are converted to oxygen and water at the anode.

Construct the ionic equation for the reaction taking place at the anode.

......[1]

(d) The first stage in the test for nitrate ions is to heat aluminium and sodium hydroxide with a solution containing nitrate ions.

State the type of chemical reaction which occurs when a solution containing nitrate ions is heated with aluminium and sodium hydroxide.

......[1]

(e) Nitrates from fertilisers cause eutrophication when they are leached from soils into rivers.Describe the process of eutrophication.

[3] [Total: 10]

BLANK PAGE

- **10** This question is about elements in Group IV of the Periodic Table.
 - (a) The table shows some properties of the Group IV elements.

element	density at room temperature in g/cm ³	melting point in °C	boiling point in °C
carbon (diamond)		3550	4827
silicon	2.34	1410	2355
germanium	5.35	937	2830
tin		232	2260
lead	11.34	328	1740

(i) Predict the density of tin.

		[1]
(ii)	Describe the general trend in the boiling points of the Group IV elements.	
		[1]
(iii)	Predict the state of silicon at 1600 °C. Give a reason for your answer.	
		[1]

(b) The structure of two compounds of silicon, **P** and **Q**, are shown.

(ii) Draw a dot-and-cross diagram for a molecule of compound Q.Show only the outer shell electrons.

[1]

(c) A compound of carbon, hydrogen and silicon has the formula $Si(CH_3)_4$. Calculate the percentage by mass of **carbon** in this compound.

[2]

[Total: 10]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

с.
r.t
ure (r.
'n
SSS
ore
p
ar
Ire
atı
e
du
tei
oom tem
õ
ati
24 dm ³ 8
dm
24
is 2
as
ny g
an
of al
<u>e</u>
mole
one
ō
of
: volume of one mole of any gas is 24 dm 3 at room temperature and press
Ini
ž
he
Η

								Group	dn								
	=											≡	≥	>	N	II>	III
							-										2
							т										He
				Key			hydrogen 1										helium 4
	4			atomic number								5	9	7	8	6	10
	Be		ato	atomic symbol	loc							Ш	ပ	z	0	ш	Ne
lithium 7	beryllium 9		rela	name relative atomic mass	SS							boron 11	carbon 12	nitrogen 14	oxygen 16	fluorine 19	neon 20
	12	_										13	14	15	16	17	18
Na	Mg											Al	Si	٩	ა	Cl	Ar
sodium 23	magnesium 24											aluminium 27	silicon 28	phosphorus 31	sulfur 32	chlorine 35.5	argon 40
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
X	Ca	Sc	i	>	ы	Мп	Fе	ပိ	ïZ	Cu	Zn	Ga	Ģ	As	Se	Ъ	Ъ
potassium 39	calcium 40	scandium 45	titanium 48	vanadium 51	chromium 52	manganese 55	iron 56	cobalt 59	nickel 59	copper 64	zinc 65	gallium 70	germanium 73	arsenic 75	selenium 79	bromine 80	krypton 84
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	S	≻	Zr	ЧN	Mo	ц	Ru	RЧ	Pd	Ag	Cd	In	Sn	Sb	Тe	Ι	Xe
rubidium 85	strontium 88	yttrium 89	zirconium 91	niobium 93	molybdenum 96	technetium -	ruthenium 101	rhodium 103	palladium 106	silver 108	cadmium 112	indium 115	tin 119	antimony 122	tellurium 128	iodine 127	xenon 131
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	lanthanoids	Ηf	Та	≥	Re	Os	Ir	Ę	Au	Hg	11	Pb	Bi	Ро	At	Rn
caesium 133	barium 137		hafnium 178	tantalum 181	tungsten 184	rhenium 186	osmium 190	iridium 192		gold 197		thallium 204	lead 207	bismuth 209	polonium –	astatine -	radon -
87	88	89-103	104	105	106	107	108	109		111			114		116		
Ļ	Ra	actinoids	Rf	Db	Sg	Bh	Hs	Mt		Rg			11		۲<		
francium -	radium -		rutherfordium -	dubnium –	seaborgium -	bohrium –	hassium -	meitnerium -	Б	roentgenium -			flerovium -		livermorium -		
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
lanthanoids	ds	La	Ce	Pr	Nd	Ът	Sm	Еu	Gd	Tb	Dy	Ч	ц	Tm	Υb	Lu	
		lanthanum 139	cerium 140	praseodymium 141	neodymium 144	promethium -	samarium 150	europium 152	gadolinium 157	terbium 159	dysprosium 163	holmium 165	erbium 167	thulium 169	ytterbium 173	Iutetium 175	
		89	06	91	92	93	94	95	96	97	98	66	100	101	102	103	
actinoids		Ac	Th	Ра	⊃	ЧD	Pu	Am	Cm	ВĶ	ç	Es	Е'n	Мd	No	Ľ	
		actinium –	thorium 232	protactinium 231	uranium 238	neptunium -	plutonium –	americium I	curium I	berkelium -	califomium -	einsteinium –	fermium -	mendelevium -	nobelium I	lawrencium -	

The Periodic Table of Elements

5070/21/O/N/21